M. T. Mustafa, Khalid Masood. Symmetry Solutions of a Non-Linear Elastic Wave Equation With Third Order Anharmonic Corrections[J]. Applied Mathematics and Mechanics, 2009, 30(8): 953-962. doi: 10.3879/j.issn.1000-0887.2009.08.008
Citation: M. T. Mustafa, Khalid Masood. Symmetry Solutions of a Non-Linear Elastic Wave Equation With Third Order Anharmonic Corrections[J]. Applied Mathematics and Mechanics, 2009, 30(8): 953-962. doi: 10.3879/j.issn.1000-0887.2009.08.008

Symmetry Solutions of a Non-Linear Elastic Wave Equation With Third Order Anharmonic Corrections

doi: 10.3879/j.issn.1000-0887.2009.08.008
  • Received Date: 2008-08-23
  • Rev Recd Date: 2009-03-16
  • Publish Date: 2009-08-15
  • Lie symmetry method was applied to analyze a non-linear elastic wave equation for longitudinal deformations with third order anharmonic corrections to the elastic energy. Symmetry algebra was found and reductions to second order ODEs were obtained through invariance under different symmetries. The reduced ODEs were further analyzed to obtain several exact solutions in explicit form. Apostol(Apostol B F. On a non-linear wave equation in elasticity. Phys Lett A, 2003, 318(6):545552) had observed that anharmonic corrections generally lead t o solutions with time-dependent singularities in finite time. Along with solutions with time-dependent singularities are obtained, also solutions which do not exhibit time-dependent singularities were obtained.
  • loading
  • [1]
    Polyanin A D,Zaitsev V F.Handbook of Nonlinear Partial Differential Equations[M].Boca Raton-London:CRC Press,2004.
    [2]
    Ovsiannikov L V.Group Analysis of Differential Equations[M].New York:Academic Press,1982.
    [3]
    Ames W F.Nonlinear Partial Differential Equations in Engineering[M].Vol 1-2. New York:Academic Press,1965-1972.
    [4]
    Baumann G.Symmetry Analysis of Differential Equations With Mathematica[M].New York:Springer-Verlag,2000.
    [5]
    Bluman G W, Cole J D.Similarity Methods for Differential Equations[M]. New York: Springer-Verlag,1974.
    [6]
    Bluman G W,Kumei S.Symmetries and Differential Equations[M]. New York:Springer-Verlag,1989.
    [7]
    Euler N,Steeb W H.Continuous Symmetries,Lie Algebras and Differential Equations[M].Mannheim:Bibliographisches Institut,1992.
    [8]
    Hansen A G.Similarity Analyses of Boundary Value Problems in Engineering[M]. Englewood Cliffs:Prentice Hall,1964.
    [9]
    Hydon P E.Symmetry Methods for Differential Equations[M]. Cambridge:Cambridge University Press,2000.
    [10]
    Ibragimov N H.CRC Handbook of Lie Group Analysis of Differential Equations. Vol 1:Symmetries,Exact Solutions and Conservation Laws[M]. Boca Raton:CRC Press,1994.
    [11]
    Ibragimov N H.CRC Handbook of Lie Group Analysis of Differential Equations. Vol 2:Applications in Engineering and Physical Sciences[M]. Boca Raton:CRC Press,1995.
    [12]
    Ibragimov N H.CRC Handbook of Lie Group Analysis of Differential Equations. Vol 3:New Trends in Theoretical Developments and Computational Methods[M]. Boca Raton:CRC Press,1996.
    [13]
    Ibragimov N H.Elementary Lie Group Analysis and Ordinary Differential Equations[M].Chichester:John Wiley & Sons,1999.
    [14]
    Miller W.Symmetry and Separation of Variables[M]. Massachusetts:Addison Wesley,Reading,1977.
    [15]
    Olver P J.Applications of Lie Groups to Differential Equations[M]. New York:Springer-Verlag,1986.
    [16]
    Stephani H.Differential Equations. Their Solution Using Symmetries[M]. Cambridge:Cambridge University Press,1989.
    [17]
    Kosevich Y A. Nonlinear sinusoidal waves and their superposition in anharmonic lattices[J].Phys Rev Lett,1993,71(13):2058-2061. doi: 10.1103/PhysRevLett.71.2058
    [18]
    Kosevich Y A. A reply to the comment by manuel rogriguez-achach and gabriel perez[J]. Phys Rev Lett,1997,79(23):4716-4716. doi: 10.1103/PhysRevLett.79.4716
    [19]
    Rodriguez-Achach M,Perez G. Comment on:nonlinear sinusoidal waves and their superposition in anharmonic lattices[J].Phys Rev Lett,1997,79(23):4715-4716. doi: 10.1103/PhysRevLett.79.4715
    [20]
    Pouget J. Lattice-dynamics and stability of modulated-strain structures for elastic phase-transitions in alloys[J].Phys Rev B,1993,48(2):864-875. doi: 10.1103/PhysRevB.48.864
    [21]
    Alfinito E,Causo M S,Profilo G,et al. A class of nonlinear wave equations containing the continuous Toda case[J].J Phys A,1998,31(9):2173-2189. doi: 10.1088/0305-4470/31/9/008
    [22]
    Apostol B F. On a non-linear wave equation in elasticity[J].Phys Lett A,2003,318(6):545-552. doi: 10.1016/j.physleta.2003.09.064
    [23]
    Fermi E,Pasta J,Ulam S. Los alamos report LA-1940[A].In:Segra E,Ed.Collected Papers by Entico Fermi[C].Vol 2. Chicago:Unveristy of Chicago Press,1965,987.
    [24]
    Bokhari A H,Kara A H,Zaman F D. Exact solutions of some general nonlinear wave equations in elasticity[J].Nonlinear Dyn,2007,48:49-54. doi: 10.1007/s11071-006-9050-z
    [25]
    Gradshteyn I S,Ryzhik I M.Table of Integrals,Series and Products[M]. New York:Academic Press 1980.
    [26]
    Slater L J.Generalized Hypergeometric Functions[M]. Cambridge:Cambridge University Press,1966.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1876) PDF downloads(967) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return