Citation: | LI Zhen. Schur Forms and Normal-Nilpotent Decompositions[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1200-1211. doi: 10.21656/1000-0887.450129 |
[1] |
LI Z. Theoretical study on the definition of vortex[D]. Beijing: Tsinghua University, 2010.
|
[2] |
LI Z, ZHANG X, HE F. Evaluation of vortex criteria by virtue of the quadruple decomposition of velocity gradient tensor[J]. Acta Physica Sinica, 2014, 63(5): 054704. doi: 10.7498/aps.63.054704
|
[3] |
MURNAGHAN F D, WINTNER A. A canonical form for real matrices under orthogonal transformations[J]. Proceedings of the National Academy of Sciences, 1931, 17(7): 417-420. doi: 10.1073/pnas.17.7.417
|
[4] |
SCHUR I. Über die charakteristischen wurzeln einer linearen substitution mit einer anwendung auf die theorie der integralgleichungen[J]. Mathematische Annalen, 1909, 66(4): 488-510. doi: 10.1007/BF01450045
|
[5] |
STICKELBERGER L. Ueber Reelle Orthogonale Substitutionen[M]. Bern: Schweizerische Nationalbibliothek, 1877.
|
[6] |
LÉON A M. Sur l’ Hermitien[J]. Rendicontidel Circolo Matematico di Palermo (1884—1940)
|
[7] |
KEYLOCK C J. Synthetic velocity gradient tensors and the identification of statistically significant aspects of the structure of turbulence[J]. Physical Review Fluids, 2017, 2(8): 084607. doi: 10.1103/PhysRevFluids.2.084607
|
[8] |
KEYLOCK C J. The Schur decomposition of the velocity gradient tensor for turbulent flows[J]. Journal of Fluid Mechanics, 2018, 848: 876-905. doi: 10.1017/jfm.2018.344
|
[9] |
DAS R, GIRIMAJI S S. Revisiting turbulence small-scale behavior using velocity gradient triple decomposition[J]. New Journal of Physics, 2020, 22(6): 063015. doi: 10.1088/1367-2630/ab8ab2
|
[10] |
HOFFMAN J. Energy stability analysis of turbulent incompressible flowbased on the triple decomposition of the velocity gradient tensor[J]. Physics of Fluids, 2021, 33(8): 081707. doi: 10.1063/5.0060584
|
[11] |
ZHU J Z. Thermodynamic and vortic structures of real Schur flows[J]. Journal of Mathematical Physics, 2021, 62(8): 083101. doi: 10.1063/5.0052296
|
[12] |
ZHU J Z. Compressible helical turbulence: fastened-structure geometry and statistics[J]. Physics of Plasmas, 2021, 28(3): 032302. doi: 10.1063/5.0031108
|
[13] |
KRONBORG J, SVELANDER F, ERIKSSON-LIDBRINK S, et al. Computational analysis of flow structures in turbulent ventricular blood flow associated with mitral valve intervention[J]. Frontiers in Physiology, 2022, 13: 806534. doi: 10.3389/fphys.2022.806534
|
[14] |
ARUN R, COLONIUS T. Velocity gradient analysis of a head-on vortexring collision[J]. Journal of Fluid Mechanics, 2024, 982: A16. doi: 10.1017/jfm.2024.90
|
[15] |
KOLÁŘ V. 2D Velocity-field analysis using triple decomposition of motion[C]//Proceedings of the Fifteenth Australasian Fluid Mechanics Conference. Sydney, Australia, 2004.
|
[16] |
KOLÁŘ V. Vortex identification: new requirements and limitations[J]. International Journal of Heat and Fluid Flow, 2007, 28(4): 638-652. doi: 10.1016/j.ijheatfluidflow.2007.03.004
|
[17] |
KRONBORG J, HOFFMAN J. The triple decomposition of the velocity gradient tensor as a standardized real Schur form[J]. Physics of Fluids, 2023, 35: 031703. doi: 10.1063/5.0138180
|
[18] |
ZOU W, XU X Y, TANG C X. Spiral streamline pattern around a critical point: its dual directivity and effective characterization by right eigen representation[J]. Physics of Fluids, 2021, 33(6): 067102. doi: 10.1063/5.0050555
|