Citation: | YANG Haozhen, LIU Jinxi, YANG Wanli, HU Yuantai. Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1279-1287. doi: 10.21656/1000-0887.450088 |
WANG Z L, WU W, FALCONI C, et al. Piezotronics and piezo-phototronics with third-generation semiconductors[J].MRS Bulletin,2018,43(12): 922-927.
|
[2]李酽, 刘敏, 刘金城, 等. 氧化锌气敏传感器性能的改善及在民航系统的应用[J].材料导报, 2014,28(21): 53-56.(LI Yan, LIU Min, LIU Jincheng, et al. Zinc oxide gas sensor: performance improvement and application in civil aviation system[J]. Materials Review,2014,28(21): 53-56.(in Chinese))
|
[3]蔡蔚, 孙东阳, 周铭浩, 等. 第三代宽禁带功率半导体及应用发展现状[J].科技导报, 2021,39(14): 42-55.(CAI Wei, SUN Dongyang, ZHOU Minghao, et al. Third generation wide bandgap power semiconductors and their applications[J]. Science & Technology Review,2021,39(14): 42-55.(in Chinese))
|
[4]WU C, MEHLMAN Y, KUMAR P, et al. A phased array based on large-area electronics that operates at gigahertz frequency[J].Nature Electronics,2021,4: 757-766.
|
[5]SHAISLAMOV U, KIM H, YANG J M, et al. CuO/ZnO/TiO2 photocathodes for a self-sustaining photocell: efficient solar energy conversion without external bias and under visible light[J]. International Journal of Hydrogen Energy,2020,45(11): 6148-6158.
|
[6]CONSONNI V, BRISCOE J, KRBER E, et al. ZnO nanowires for solar cells: a comprehensive review[J].Nanotechnology,2019,30(36): 362001.
|
[7]WIBOWO A, MARSUDI M A, AMAL M I, et al. ZnO nanostructured materials for emerging solar cell applications[J].RSC Advances,2020,10(70): 42838-42859.
|
[8]YANG Q, GUO X, WANG W, et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect[J].ACS Nano,2010,4(10): 6285-6291.
|
[9]SUN J, HUA Q, ZHOU R, et al. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells[J].ACS Nano,2019,13(4): 4507-4513.
|
[10]ZHU L, WANG L, PAN C, et al. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect[J].ACS Nano,2017,11(2): 1894-1900.
|
[11]ZHU L, WANG L, XUE F, et al. Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array[J].Advanced Science,2017,4(1): 1600185.
|
[12]刘恩科, 朱秉升, 罗晋生. 半导体物理学[M].7版. 北京: 电子工业出版社, 2008.(LIU Enke, ZHU Bingsheng, LUO Jinsheng.The Physics of Semiconductors[M].7th ed. Beijing: Publishing House of Electronics Industry, 2008.(in Chinese))
|
[13]YANG W, HONG R, YANG H, et al. A high performance piezoelectric hetero-junction based on the configuration reform on interfacial potential barrier[J].Composite Structures,2024,328: 117723.
|
[14]YANG W, LIU J, XU Y, et al. A full-coupling model of PN junctions based on the global-domain carrier motions with inclusion of the two metal/semiconductor contacts at endpoints[J].Applied Mathematics and Mechanics(English Edition),2020,41(6): 845-858.
|
[15]IBRAHEM M A, VERRELLI E, LAI K T, et al. Dual wavelength (ultraviolet and green) photodetectors using solution processed zinc oxide nanoparticles[J].ACS Applied Materials & Interfaces,2017,9(42): 36971-36979.
|
[16]YANG H, YANG W, HU Y. Experimental study on the influence of annealing temperature on the piezoelectric property of ZnO bulk single crystal[J].Materials Today Communications,2024,38: 108251.
|
[17]XIE W, PENG W, WANG Y, et al. On the piezophototronic effect in heterojunction photodiode with type-Ⅱ energy band: theoretical model for anisotype heterojunction[J].Physica Status Solidi (RRL):Rapid Research Letters,2023,17(9): 2300034.
|
[18]GUO M, QIN G, LU C, et al. Photoexcitation dominated electrical behaviors in a nano GaN PN junction[J].Mechanics of Advanced Materials and Structures,2023: 1-7. DOI: 10.1080/15376494.2023.2242832.
|
[19]AGUILAR O, DE CASTRO S, GODOY M P F, et al. Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells[J]. Optical Materials Express,2019,9(9): 3638.
|
[20]LI S, CHENG R, MA N, et al. Analysis of piezoelectric semiconductor fibers under gradient temperature changes[J].Applied Mathematics and Mechanics(English Edition),2024,45(2): 311-320.
|
[21]YANG W, LIU J, HU Y. Mechanical tuning methodology on the barrier configuration near a piezoelectric PN interface and the regulation mechanism on I—V characteristics of the junction[J].Nano Energy,2021,81: 105581.
|
[22]黄昆, 韩汝琦. 半导体物理基础[M].北京: 科学出版社, 1979.(HUANG Kun, HAN Ruqi.The Physical Basis of Semiconductors[M].Beijing: Science Press, 1979.(in Chinese))
|
[23]YANG Y, YANG W, WANG Y, et al. A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions[J].Nano Energy,2022,92: 106741.
|
[24]WANG Z L, YANG R, ZHOU J, et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics[J].Materials Science and Engineering: R: Reports,2010,70(36): 320-329.
|
[25]ZHANG C, WANG X, CHEN W, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force[J].Smart Materials and Structures,2017,26(2): 025030.
|
[26]沈亮. 新型结构异质结太阳能电池的研究[D].长春: 吉林大学, 2009.(SHEN Liang. Study on heterojunction solar cells fabricated by novel structure[D].Changchun: Jilin University, 2009.(in Chinese))
|
[27]申衍伟. ZnO异质结光电器件的制备及其性能研究[D].北京: 北京科技大学, 2016.(SHEN Yanwei. Studies on preparation and performance characteristics of ZnO based heterojunction optoelectronic devices [D].Beijing: University of Science and Technology Beijing, 2016. (in Chinese))
|
[28]高平奇, 王子磊, 林豪, 等. 太阳电池物理与器件[M].广州: 中山大学出版社, 2022.(GAO Pingqi, WANG Zilei, LIN Hao, et al.The Physics and Devices of Solar Cells[M].Guangzhou: Sun Yat-sen University Press, 2022.(in Chinese))
|
[29]HAVERKORT J E M, GARNETT E C, BAKKERS E P A M. Fundamentals of the nanowire solar cell: optimization of the open circuit voltage[J].Applied Physics Reviews,2018,5(3): 031106.
|
[30]CUI Y, WANG J, PLISSARD S R, et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning[J].Nano Letters,2013,13(9): 4113-4117.
|
[12]ZHANG D, FEI Q, ZHANG P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor[J].Composite Structures,2017,168: 633-645.
|
[13]GABRIELE I, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs[J].Composite Structures,2018,183: 242-261.
|
[14]SAWANT R, PATEL M, PATEL S. Numerical analysis of honeycomb sandwich panels under blast load[J].Materials Today: Proceedings,2023,87: 67-73.
|
[15]YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: an experimental study[J].International Journal of Impact Engineering,2015, 75: 100-109.
|
[16]WEN H M, REDDY T Y, REID S R, et al. Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading[J].Key Engineering Materials,1998,143: 501-552.
|
[17]MENNA C, ZINNO A, ASPRONE D, et al. Numerical assessment of the impact behavior of honeycomb sandwich structures[J].Composite Structures,2013,106: 326-339.
|
[18]EBRAHIMI H, GHOSH R, MAHDI E, et al. Honeycomb sandwich panels subjected to combined shock and projectile impact[J].International Journal of Impact Engineering,2016,95: 1-11.
|
[19]SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J].International Journal of Impact Engineering,2018,122: 119-136.
|
[20]RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading[J].International Journal of Solids and Structures,2006,43(6): 1746-1763.
|
[21]DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J].International Journal of Impact Engineering,2008,35(9): 1063-1074.
|
[22]CASTANI B, BOUVET C, GINOT M. Review of composite sandwich structure in aeronautic applications[J].Composites (Part C): Open Access,2020,1: 100004.
|
[23]张杜江, 赵振宇, 褚庆国, 等. 浅埋爆炸下考虑乘员安全的防雷底板设计理论模型[J/OL]. 应用力学学报, 2024[2024-06-09]. https://kns.cnki.net/kcms/detail/61.1112.o3.20221124.1404.006.html. (ZHANG Dujiang, ZHAO Zhenyu, CHU Qingguo, et al. Theoretical model of armored vehicle bottom plate subjected to detonation of shallow-buried explosives, with occupant safety considered[J/OL].Chinese Journal of Applied Mechanics,2024[2024-06-09]. https://kns.cnki. net/kcms/detail/61.1112.o3.20221124.1404.006.html.(in Chinese))
|
[24]CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J].International Journal of Impact Engineering,2012,43: 6-15.
|
[25]ELGEWELY E. 3D reconstruction of furniture fragments from the ancient town of karanis[J].Studies in Digital Heritage,2017,1(2): 409-427.
|
[26]KOZAK J. Selected problems on application of steel sandwich panels to marine structures[J].Polish Maritime Research,2009,16(4): 9-15.
|
[27]LIU Z, MAJUMDAR P K, COUSINS T E, et al. Development and evaluation of an adhesively bonded panel-to-panel joint for a FRP bridge deck system[J].Journal of Composites for Construction,2008,12(2): 224-233.
|
[28]ZHOU A, KELLER T. Joining techniques for fiber reinforced polymer composite bridge deck systems[J].Composite Structures,2005,69(3): 336-345.
|
[29]BANHART J. Manufacture, characterisation and application of cellular metals and metal foams[J].Progress in Materials Science,2001,46(6): 559-632.
|
[30]SCHLER P, FISCHER S F, BHRIG-POLACZEK A, et al. Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading[J].Materials Science and Engineering: A,2013, 587: 250-261.
|
[31]张杜江, 赵振宇, 贺良, 等. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证[J]. 兵工学报, 2022,43(8): 1966-1976.(ZHANG Dujiang, ZHAO Zhenyu, HE Liang, et al. Calibration and verification of dynamic mechanical properties of high-strength armored steel based on Johnson-Cook constitutive model[J].Acta Armamentarii,2022,43(8): 1966-1976.(in Chinese))
|
[32]NAHSHON K, PONTIN M, EVANS A, et al. Dynamic shear rupture of steel plates[J].Journal of Mechanics of Materials and Structures,2007,2(10): 2049-2066.
|
[33]郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系[J]. 爆炸与冲击, 2018,38(4): 804-810.(GUO Zitao, GAO Bin, GUO Zhao, et al. Dynamic constitutive relation based on J-C model of Q235 steel[J].Explosion and Shock Waves,2018,38(4): 804-810.(in Chinese))
|
[34]SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J].International Journal of Impact Engineering,2018, 122: 119-136.
|