Volume 45 Issue 10
Oct.  2024
Turn off MathJax
Article Contents
YANG Haozhen, LIU Jinxi, YANG Wanli, HU Yuantai. Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1279-1287. doi: 10.21656/1000-0887.450088
Citation: YANG Haozhen, LIU Jinxi, YANG Wanli, HU Yuantai. Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1279-1287. doi: 10.21656/1000-0887.450088

Study on Mechanical Modulation of Output Characteristics in Piezoelectric Semiconductor Photovoltaic Cells

doi: 10.21656/1000-0887.450088
Funds:

The National Science Foundation of China(12232007;12102141;11972164;U21A20430)

  • Received Date: 2024-04-07
  • Rev Recd Date: 2024-07-08
  • Available Online: 2024-10-31
  • Publish Date: 2024-10-01
  • The performances of piezoelectric PN junction photovoltaic cells are closely related to the internal potential barrier configurations and the distributions of carriers, and can be tuned through carrier transport characteristic changes by the piezopotentials under the piezoeffect. However, the classical PN junction model fails to describe the coupling effect between multiple physical fields and carriers in the potential barrier zone due to the depletion layer assumptions and others, and in turn gives severely distorted results. Herein a mechanicselectricityphotonicscarrier global multifield coupling model was developed to investigate the tuning mechanism for mechanical loadings on the output characteristics of ZnO photovoltaic cells. The numerical results indicate that, the shortcircuit current, the opencircuit voltage, and the maximum output power of the photovoltaic cell increase with the compressive stress under a fixed light intensity, while tensile stresses are not conducive to improving the performances of photovoltaic cells. In addition, a better tuning effect occurs with a loading region wider than the illuminated region, or with both these two external fields acting in the same side of the n/pzone.
  • loading
  • WANG Z L, WU W, FALCONI C, et al. Piezotronics and piezo-phototronics with third-generation semiconductors[J].MRS Bulletin,2018,43(12): 922-927.
    [2]李酽, 刘敏, 刘金城, 等. 氧化锌气敏传感器性能的改善及在民航系统的应用[J].材料导报, 2014,28(21): 53-56.(LI Yan, LIU Min, LIU Jincheng, et al. Zinc oxide gas sensor: performance improvement and application in civil aviation system[J]. Materials Review,2014,28(21): 53-56.(in Chinese))
    [3]蔡蔚, 孙东阳, 周铭浩, 等. 第三代宽禁带功率半导体及应用发展现状[J].科技导报, 2021,39(14): 42-55.(CAI Wei, SUN Dongyang, ZHOU Minghao, et al. Third generation wide bandgap power semiconductors and their applications[J]. Science & Technology Review,2021,39(14): 42-55.(in Chinese))
    [4]WU C, MEHLMAN Y, KUMAR P, et al. A phased array based on large-area electronics that operates at gigahertz frequency[J].Nature Electronics,2021,4: 757-766.
    [5]SHAISLAMOV U, KIM H, YANG J M, et al. CuO/ZnO/TiO2 photocathodes for a self-sustaining photocell: efficient solar energy conversion without external bias and under visible light[J]. International Journal of Hydrogen Energy,2020,45(11): 6148-6158.
    [6]CONSONNI V, BRISCOE J, KRBER E, et al. ZnO nanowires for solar cells: a comprehensive review[J].Nanotechnology,2019,30(36): 362001.
    [7]WIBOWO A, MARSUDI M A, AMAL M I, et al. ZnO nanostructured materials for emerging solar cell applications[J].RSC Advances,2020,10(70): 42838-42859.
    [8]YANG Q, GUO X, WANG W, et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect[J].ACS Nano,2010,4(10): 6285-6291.
    [9]SUN J, HUA Q, ZHOU R, et al. Piezo-phototronic effect enhanced efficient flexible perovskite solar cells[J].ACS Nano,2019,13(4): 4507-4513.
    [10]ZHU L, WANG L, PAN C, et al. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect[J].ACS Nano,2017,11(2): 1894-1900.
    [11]ZHU L, WANG L, XUE F, et al. Piezo-phototronic effect enhanced flexible solar cells based on n-ZnO/p-SnS core-shell nanowire array[J].Advanced Science,2017,4(1): 1600185.
    [12]刘恩科, 朱秉升, 罗晋生. 半导体物理学[M].7版. 北京: 电子工业出版社, 2008.(LIU Enke, ZHU Bingsheng, LUO Jinsheng.The Physics of Semiconductors[M].7th ed. Beijing: Publishing House of Electronics Industry, 2008.(in Chinese))
    [13]YANG W, HONG R, YANG H, et al. A high performance piezoelectric hetero-junction based on the configuration reform on interfacial potential barrier[J].Composite Structures,2024,328: 117723.
    [14]YANG W, LIU J, XU Y, et al. A full-coupling model of PN junctions based on the global-domain carrier motions with inclusion of the two metal/semiconductor contacts at endpoints[J].Applied Mathematics and Mechanics(English Edition),2020,41(6): 845-858.
    [15]IBRAHEM M A, VERRELLI E, LAI K T, et al. Dual wavelength (ultraviolet and green) photodetectors using solution processed zinc oxide nanoparticles[J].ACS Applied Materials & Interfaces,2017,9(42): 36971-36979.
    [16]YANG H, YANG W, HU Y. Experimental study on the influence of annealing temperature on the piezoelectric property of ZnO bulk single crystal[J].Materials Today Communications,2024,38: 108251.
    [17]XIE W, PENG W, WANG Y, et al. On the piezophototronic effect in heterojunction photodiode with type-Ⅱ energy band: theoretical model for anisotype heterojunction[J].Physica Status Solidi (RRL):Rapid Research Letters,2023,17(9): 2300034.
    [18]GUO M, QIN G, LU C, et al. Photoexcitation dominated electrical behaviors in a nano GaN PN junction[J].Mechanics of Advanced Materials and Structures,2023: 1-7. DOI: 10.1080/15376494.2023.2242832.
    [19]AGUILAR O, DE CASTRO S, GODOY M P F, et al. Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells[J]. Optical Materials Express,2019,9(9): 3638.
    [20]LI S, CHENG R, MA N, et al. Analysis of piezoelectric semiconductor fibers under gradient temperature changes[J].Applied Mathematics and Mechanics(English Edition),2024,45(2): 311-320.
    [21]YANG W, LIU J, HU Y. Mechanical tuning methodology on the barrier configuration near a piezoelectric PN interface and the regulation mechanism on I—V characteristics of the junction[J].Nano Energy,2021,81: 105581.
    [22]黄昆, 韩汝琦. 半导体物理基础[M].北京: 科学出版社, 1979.(HUANG Kun, HAN Ruqi.The Physical Basis of Semiconductors[M].Beijing: Science Press, 1979.(in Chinese))
    [23]YANG Y, YANG W, WANG Y, et al. A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions[J].Nano Energy,2022,92: 106741.
    [24]WANG Z L, YANG R, ZHOU J, et al. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics[J].Materials Science and Engineering: R: Reports,2010,70(36): 320-329.
    [25]ZHANG C, WANG X, CHEN W, et al. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force[J].Smart Materials and Structures,2017,26(2): 025030.
    [26]沈亮. 新型结构异质结太阳能电池的研究[D].长春: 吉林大学, 2009.(SHEN Liang. Study on heterojunction solar cells fabricated by novel structure[D].Changchun: Jilin University, 2009.(in Chinese))
    [27]申衍伟. ZnO异质结光电器件的制备及其性能研究[D].北京: 北京科技大学, 2016.(SHEN Yanwei. Studies on preparation and performance characteristics of ZnO based heterojunction optoelectronic devices [D].Beijing: University of Science and Technology Beijing, 2016. (in Chinese))
    [28]高平奇, 王子磊, 林豪, 等. 太阳电池物理与器件[M].广州: 中山大学出版社, 2022.(GAO Pingqi, WANG Zilei, LIN Hao, et al.The Physics and Devices of Solar Cells[M].Guangzhou: Sun Yat-sen University Press, 2022.(in Chinese))
    [29]HAVERKORT J E M, GARNETT E C, BAKKERS E P A M. Fundamentals of the nanowire solar cell: optimization of the open circuit voltage[J].Applied Physics Reviews,2018,5(3): 031106.
    [30]CUI Y, WANG J, PLISSARD S R, et al. Efficiency enhancement of InP nanowire solar cells by surface cleaning[J].Nano Letters,2013,13(9): 4113-4117.
    [12]ZHANG D, FEI Q, ZHANG P. Drop-weight impact behavior of honeycomb sandwich panels under a spherical impactor[J].Composite Structures,2017,168: 633-645.
    [13]GABRIELE I, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs[J].Composite Structures,2018,183: 242-261.
    [14]SAWANT R, PATEL M, PATEL S. Numerical analysis of honeycomb sandwich panels under blast load[J].Materials Today: Proceedings,2023,87: 67-73.
    [15]YAHAYA M A, RUAN D, LU G, et al. Response of aluminium honeycomb sandwich panels subjected to foam projectile impact: an experimental study[J].International Journal of Impact Engineering,2015, 75: 100-109.
    [16]WEN H M, REDDY T Y, REID S R, et al. Indentation, penetration and perforation of composite laminate and sandwich panels under quasi-static and projectile loading[J].Key Engineering Materials,1998,143: 501-552.
    [17]MENNA C, ZINNO A, ASPRONE D, et al. Numerical assessment of the impact behavior of honeycomb sandwich structures[J].Composite Structures,2013,106: 326-339.
    [18]EBRAHIMI H, GHOSH R, MAHDI E, et al. Honeycomb sandwich panels subjected to combined shock and projectile impact[J].International Journal of Impact Engineering,2016,95: 1-11.
    [19]SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J].International Journal of Impact Engineering,2018,122: 119-136.
    [20]RATHBUN H J, RADFORD D D, XUE Z, et al. Performance of metallic honeycomb-core sandwich beams under shock loading[J].International Journal of Solids and Structures,2006,43(6): 1746-1763.
    [21]DHARMASENA K P, WADLEY H N G, XUE Z, et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J].International Journal of Impact Engineering,2008,35(9): 1063-1074.
    [22]CASTANI B, BOUVET C, GINOT M. Review of composite sandwich structure in aeronautic applications[J].Composites (Part C): Open Access,2020,1: 100004.
    [23]张杜江, 赵振宇, 褚庆国, 等. 浅埋爆炸下考虑乘员安全的防雷底板设计理论模型[J/OL]. 应用力学学报, 2024[2024-06-09]. https://kns.cnki.net/kcms/detail/61.1112.o3.20221124.1404.006.html. (ZHANG Dujiang, ZHAO Zhenyu, CHU Qingguo, et al. Theoretical model of armored vehicle bottom plate subjected to detonation of shallow-buried explosives, with occupant safety considered[J/OL].Chinese Journal of Applied Mechanics,2024[2024-06-09]. https://kns.cnki. net/kcms/detail/61.1112.o3.20221124.1404.006.html.(in Chinese))
    [24]CRUPI V, EPASTO G, GUGLIELMINO E. Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading[J].International Journal of Impact Engineering,2012,43: 6-15.
    [25]ELGEWELY E. 3D reconstruction of furniture fragments from the ancient town of karanis[J].Studies in Digital Heritage,2017,1(2): 409-427.
    [26]KOZAK J. Selected problems on application of steel sandwich panels to marine structures[J].Polish Maritime Research,2009,16(4): 9-15.
    [27]LIU Z, MAJUMDAR P K, COUSINS T E, et al. Development and evaluation of an adhesively bonded panel-to-panel joint for a FRP bridge deck system[J].Journal of Composites for Construction,2008,12(2): 224-233.
    [28]ZHOU A, KELLER T. Joining techniques for fiber reinforced polymer composite bridge deck systems[J].Composite Structures,2005,69(3): 336-345.
    [29]BANHART J. Manufacture, characterisation and application of cellular metals and metal foams[J].Progress in Materials Science,2001,46(6): 559-632.
    [30]SCHLER P, FISCHER S F, BHRIG-POLACZEK A, et al. Deformation and failure behaviour of open cell Al foams under quasistatic and impact loading[J].Materials Science and Engineering: A,2013, 587: 250-261.
    [31]张杜江, 赵振宇, 贺良, 等. 基于Johnson-Cook本构模型的高强度装甲钢动态力学性能参数标定及验证[J]. 兵工学报, 2022,43(8): 1966-1976.(ZHANG Dujiang, ZHAO Zhenyu, HE Liang, et al. Calibration and verification of dynamic mechanical properties of high-strength armored steel based on Johnson-Cook constitutive model[J].Acta Armamentarii,2022,43(8): 1966-1976.(in Chinese))
    [32]NAHSHON K, PONTIN M, EVANS A, et al. Dynamic shear rupture of steel plates[J].Journal of Mechanics of Materials and Structures,2007,2(10): 2049-2066.
    [33]郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系[J]. 爆炸与冲击, 2018,38(4): 804-810.(GUO Zitao, GAO Bin, GUO Zhao, et al. Dynamic constitutive relation based on J-C model of Q235 steel[J].Explosion and Shock Waves,2018,38(4): 804-810.(in Chinese))
    [34]SUN G, CHEN D, WANG H, et al. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations[J].International Journal of Impact Engineering,2018, 122: 119-136.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (46) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return