Citation: | YE Yunong, EBURILITU. A Symplectic Superposition Method for Vibration of the Orthotropic Rectangular Thin Plate Point-Supported at a Corner and Clamped at its Opposite Edges[J]. Applied Mathematics and Mechanics, 2024, 45(7): 898-906. doi: 10.21656/1000-0887.450001 |
[1] |
LEISSA A W. Vibration of plates: SP-160[R]. Washington DC: Office of Technology Utilization, NASA, 1960.
|
[2] |
RAJU K K, RAO G V. Non-linear vibrations of orthotropic plates by a finite element method[J]. Journal of Sound and Vibration, 1976, 48 (2): 301-303. doi: 10.1016/0022-460X(76)90468-5
|
[3] |
LAL R, SAINI R. On the use of GDQ for vibration characteristic of non-homogeneous orthotropic rectangular plates of bilinearly varying thickness[J]. Acta Mechanica, 2015, 226: 1605-1620. doi: 10.1007/s00707-014-1272-4
|
[4] |
VALIZADEH N, BUI T Q, VU V T, et al. Isogeometric simulation for buckling, free and forced vibration of orthotropic plates[J]. International Journal of Applied Mechanics, 2013, 5 (2): 1350017. doi: 10.1142/S1758825113500178
|
[5] |
XING Y F, LIU B. New exact soltions for free vibrations of thin orthotropic rectangular plates[J]. Composite Structures, 2009, 89: 567-574. doi: 10.1016/j.compstruct.2008.11.010
|
[6] |
LATIFI M, FARHATNIA F, KADKHODAEI M. Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion[J]. European Journal of Mechanics A: Solids, 2013, 41 (11): 16-27.
|
[7] |
钟万勰. 分离变量法与哈密尔顿体系[J]. 计算力学学报, 1991, 8 (3): 229-240. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG199103000.htm
ZHONG Wanxie. Separation variable method and Hamilton system[J]. Chinese Journal of Computational Mechanics, 1991, 8 (3): 229-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG199103000.htm
|
[8] |
LIU Yuemei, LI Rui. Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplecticapproach[J]. Applied Methematical Modelling, 2010, 34 (4): 856-865. doi: 10.1016/j.apm.2009.07.003
|
[9] |
HU Z Y, YANG Y S, ZHOU C, et al. On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates[J]. Journal of Sound and Vibration, 2020, 489: 115695. doi: 10.1016/j.jsv.2020.115695
|
[10] |
周震寰, 李月杰, 范俊梅, 等. 双功能梯度纳米梁系统振动分析的辛方法[J]. 应用数学和力学, 2018, 39 (10): 1159-1171. doi: 10.21656/1000-0887.390130
ZHOU Zhenhuan, LI Yuejie, FAN Junmei, et al. A symplectic approach for free vibration of functionally graded double-nanobeam systems embedded in viscoelastic medium[J]. Applied Mathematics and Mechanics, 2018, 39 (10): 1159-1171. (in Chinese) doi: 10.21656/1000-0887.390130
|
[11] |
刘明峰, 徐典, 倪卓凡, 等. 非Lévy型正交各向异性开口圆柱壳屈曲问题的辛叠加解析解[J]. 应用数学和力学, 2023, 44 (12): 1428-1440. doi: 10.21656/1000-0887.440093
LIU Mingfeng, XU Dian, NI Zhuofan, et al. Symplectic superposition-based analytical solutions for buckling of non-Lévy-type orthotropic cylindrical shells[J]. Applied Mathematics and Mechanics, 2023, 44 (12): 1428-1440. (in Chinese) doi: 10.21656/1000-0887.440093
|
[12] |
XIONG Sijun, ZHENG Xinran, ZHOU Chao, et al. Buckling of non-Lévy-type rectangular thick plates: new benchmark solutions in the symplectic framework[J]. Applied Mathematical Modelling, 2024, 125: 668-686. doi: 10.1016/j.apm.2023.09.009
|
[13] |
ALTEKIN M. Bending of orthotropic super-elliptical plates on intermediate point supports[J]. Ocean Engineering, 2010, 37 (11): 1048-1060.
|
[14] |
LI R, WANG B, LI P. Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported[J]. International Journal of Mechanical Sciences, 2014, 85: 212-218. doi: 10.1016/j.ijmecsci.2014.05.004
|
[15] |
KOCATÜRK T, SEZER S, DEMIR C. Determination of the steady state response of viscoelastically point-sopported rectangular specially orthotropic plates with added concentrated masses[J]. Journal of Sound and Vibration, 2004, 278 (4/5): 789-806.
|
[16] |
LI R, WANG B, LI G, et al. Analytic free vibration solutions of rectangular thin plates point-supported at a corner[J]. International Journal of Mechanical Sciences, 2015, 96/97: 199-205. doi: 10.1016/j.ijmecsci.2015.04.004
|
[17] |
LI R, ZHENG X, WANG P, et al. New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach[J]. Acta Mechanica, 2019, 230: 3087-3101. doi: 10.1007/s00707-019-02448-1
|
[18] |
SU X, BAI E, CHEN A. Symplectic superposition solution of free vibration of fully clamped orthotropic rectangular thin plates on two-parameter elastic foundation[J]. International Journal of Structural Stability and Dynamics, 2021, 21 (9): 2150122. doi: 10.1142/S0219455421501224
|
[19] |
YAO W, ZHONG W, LIM C W. Symplectic Elasticity[M]. Singapore: World Scientific, 2009.
|