Volume 45 Issue 7
Jul.  2024
Turn off MathJax
Article Contents
YE Yunong, EBURILITU. A Symplectic Superposition Method for Vibration of the Orthotropic Rectangular Thin Plate Point-Supported at a Corner and Clamped at its Opposite Edges[J]. Applied Mathematics and Mechanics, 2024, 45(7): 898-906. doi: 10.21656/1000-0887.450001
Citation: YE Yunong, EBURILITU. A Symplectic Superposition Method for Vibration of the Orthotropic Rectangular Thin Plate Point-Supported at a Corner and Clamped at its Opposite Edges[J]. Applied Mathematics and Mechanics, 2024, 45(7): 898-906. doi: 10.21656/1000-0887.450001

A Symplectic Superposition Method for Vibration of the Orthotropic Rectangular Thin Plate Point-Supported at a Corner and Clamped at its Opposite Edges

doi: 10.21656/1000-0887.450001
  • Received Date: 2024-01-02
  • Rev Recd Date: 2024-01-31
  • Publish Date: 2024-07-01
  • The symplectic superposition method was used to study the vibration problem of the orthotropic rectangular thin plate point-supported at a corner and clamped at its opposite edges. Firstly, based on the boundary conditions, the original vibration problem was decomposed into 2 subproblems with 2 opposite edges simply supported. Next, the series expansion solutions to the 2 sub-vibration problems were obtained based on the separation variable method in the Hamiltonian system. Then the symplectic superposition solution to the original vibration problem was obtained with the superposition method. To determine the terms of the series expansion of the obtained symplectic superposition solution in specific calculations, the convergence analysis of the solution for calculating orthotropic rectangular thin plates was performed. The symplectic superposition solution was also used to calculate the vibration frequencies of the isotropic and orthotropic rectangular thin plate point-supported at a corner and clamped at its opposite edges, respectively, and to give the modes corresponding to the 1st 8 vibration frequencies of an orthotropic square thin plate.
  • loading
  • [1]
    LEISSA A W. Vibration of plates: SP-160[R]. Washington DC: Office of Technology Utilization, NASA, 1960.
    [2]
    RAJU K K, RAO G V. Non-linear vibrations of orthotropic plates by a finite element method[J]. Journal of Sound and Vibration, 1976, 48 (2): 301-303. doi: 10.1016/0022-460X(76)90468-5
    [3]
    LAL R, SAINI R. On the use of GDQ for vibration characteristic of non-homogeneous orthotropic rectangular plates of bilinearly varying thickness[J]. Acta Mechanica, 2015, 226: 1605-1620. doi: 10.1007/s00707-014-1272-4
    [4]
    VALIZADEH N, BUI T Q, VU V T, et al. Isogeometric simulation for buckling, free and forced vibration of orthotropic plates[J]. International Journal of Applied Mechanics, 2013, 5 (2): 1350017. doi: 10.1142/S1758825113500178
    [5]
    XING Y F, LIU B. New exact soltions for free vibrations of thin orthotropic rectangular plates[J]. Composite Structures, 2009, 89: 567-574. doi: 10.1016/j.compstruct.2008.11.010
    [6]
    LATIFI M, FARHATNIA F, KADKHODAEI M. Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion[J]. European Journal of Mechanics A: Solids, 2013, 41 (11): 16-27.
    [7]
    钟万勰. 分离变量法与哈密尔顿体系[J]. 计算力学学报, 1991, 8 (3): 229-240. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG199103000.htm

    ZHONG Wanxie. Separation variable method and Hamilton system[J]. Chinese Journal of Computational Mechanics, 1991, 8 (3): 229-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG199103000.htm
    [8]
    LIU Yuemei, LI Rui. Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplecticapproach[J]. Applied Methematical Modelling, 2010, 34 (4): 856-865. doi: 10.1016/j.apm.2009.07.003
    [9]
    HU Z Y, YANG Y S, ZHOU C, et al. On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates[J]. Journal of Sound and Vibration, 2020, 489: 115695. doi: 10.1016/j.jsv.2020.115695
    [10]
    周震寰, 李月杰, 范俊梅, 等. 双功能梯度纳米梁系统振动分析的辛方法[J]. 应用数学和力学, 2018, 39 (10): 1159-1171. doi: 10.21656/1000-0887.390130

    ZHOU Zhenhuan, LI Yuejie, FAN Junmei, et al. A symplectic approach for free vibration of functionally graded double-nanobeam systems embedded in viscoelastic medium[J]. Applied Mathematics and Mechanics, 2018, 39 (10): 1159-1171. (in Chinese) doi: 10.21656/1000-0887.390130
    [11]
    刘明峰, 徐典, 倪卓凡, 等. 非Lévy型正交各向异性开口圆柱壳屈曲问题的辛叠加解析解[J]. 应用数学和力学, 2023, 44 (12): 1428-1440. doi: 10.21656/1000-0887.440093

    LIU Mingfeng, XU Dian, NI Zhuofan, et al. Symplectic superposition-based analytical solutions for buckling of non-Lévy-type orthotropic cylindrical shells[J]. Applied Mathematics and Mechanics, 2023, 44 (12): 1428-1440. (in Chinese) doi: 10.21656/1000-0887.440093
    [12]
    XIONG Sijun, ZHENG Xinran, ZHOU Chao, et al. Buckling of non-Lévy-type rectangular thick plates: new benchmark solutions in the symplectic framework[J]. Applied Mathematical Modelling, 2024, 125: 668-686. doi: 10.1016/j.apm.2023.09.009
    [13]
    ALTEKIN M. Bending of orthotropic super-elliptical plates on intermediate point supports[J]. Ocean Engineering, 2010, 37 (11): 1048-1060.
    [14]
    LI R, WANG B, LI P. Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported[J]. International Journal of Mechanical Sciences, 2014, 85: 212-218. doi: 10.1016/j.ijmecsci.2014.05.004
    [15]
    KOCATÜRK T, SEZER S, DEMIR C. Determination of the steady state response of viscoelastically point-sopported rectangular specially orthotropic plates with added concentrated masses[J]. Journal of Sound and Vibration, 2004, 278 (4/5): 789-806.
    [16]
    LI R, WANG B, LI G, et al. Analytic free vibration solutions of rectangular thin plates point-supported at a corner[J]. International Journal of Mechanical Sciences, 2015, 96/97: 199-205. doi: 10.1016/j.ijmecsci.2015.04.004
    [17]
    LI R, ZHENG X, WANG P, et al. New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach[J]. Acta Mechanica, 2019, 230: 3087-3101. doi: 10.1007/s00707-019-02448-1
    [18]
    SU X, BAI E, CHEN A. Symplectic superposition solution of free vibration of fully clamped orthotropic rectangular thin plates on two-parameter elastic foundation[J]. International Journal of Structural Stability and Dynamics, 2021, 21 (9): 2150122. doi: 10.1142/S0219455421501224
    [19]
    YAO W, ZHONG W, LIM C W. Symplectic Elasticity[M]. Singapore: World Scientific, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article Metrics

    Article views (127) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return