Citation: | LI Hongyang, RAHMATJAN Imin. Numerical Simulations of Shock Problems With the Revised KDF-SPH Method[J]. Applied Mathematics and Mechanics, 2024, 45(12): 1483-1493. doi: 10.21656/1000-0887.440304 |
[1] |
LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013. doi: 10.1086/112164
|
[2] |
HE F, ZHANG H S, HUANG C, et al. Numerical investigation of the solitary wave breaking over a slope by using the finite particle method[J]. Coastal Engineering, 2020, 156: 103617. doi: 10.1016/j.coastaleng.2019.103617
|
[3] |
HE F, ZHANG H S, HUANG C, et al. A stable SPH model with large CFL numbers for multi-phase flows with large density ratios[J]. Journal of Computational Physics, 2022, 453: 110944. doi: 10.1016/j.jcp.2022.110944
|
[4] |
FENG D Y, IMIN R. A kernel derivative free SPH method[J]. Results in Applied Mathematics, 2023, 17: 100355. doi: 10.1016/j.rinam.2023.100355
|
[5] |
HUANG C, LEI J M, LIU M B, et al. A kernel gradient free (KGF) SPH method[J]. International Journal for Numerical Methods in Fluids, 2015, 78(11): 691-707. doi: 10.1002/fld.4037
|
[6] |
MAATOUK K. Third order derivative free SPH iterative method for solving nonlinear systems[J]. Applied Mathematics and Computation, 2015, 270: 557-566. doi: 10.1016/j.amc.2015.08.083
|
[7] |
IMIN R, IMINJAN A, HALIK A. A new revised scheme for SPH[J]. International Journal of Computational Methods, 2018, 15(5): 1-17.
|
[8] |
IMIN R, WEI Y, IMINJAN A. New corrective scheme for DF-SPH[J]. Computational Particle Mechanics, 2020, 7(3): 471-478. doi: 10.1007/s40571-019-00273-w
|
[9] |
HUANG C, LONG T, LI S M, et al. A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils[J]. Engineering Analysis With Boundary Elements, 2019, 106: 571-587. doi: 10.1016/j.enganabound.2019.06.010
|
[10] |
GAROOSI F, SHAKIBAEINIA A. Numerical simulation of free-surface flow and convection heat transfer using a modified weakly compressible smoothed particle hydrodynamics (WCSPH) method[J]. International Journal of Mechanical Sciences, 2020, 188: 105940. doi: 10.1016/j.ijmecsci.2020.105940
|
[11] |
HUANG C, LEI J M, LIU M B, et al. An improved KGF-SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows[J]. International Journal for Numerical Methods in Fluids, 2016, 81(6): 377-396. doi: 10.1002/fld.4191
|
[12] |
王建玲, 李小纲, 汪文帅. 一个改进的三阶WENO-Z型格式[J]. 应用数学和力学, 2021, 42(4): 394-404. doi: 10.21656/1000-0887.410203
WANG Jianling, LI Xiaogang, WANG Wenshuai. An improved 3rd-order WENO-Z type scheme[J]. Applied Mathematics and Mechanics, 2021, 42(4): 394-404. (in Chinese) doi: 10.21656/1000-0887.410203
|
[13] |
张成治, 郑素佩, 陈雪, 等. 求解理想磁流体方程的四阶WENO型熵稳定格式[J]. 应用数学和力学, 2023, 44(11): 1398-1412. doi: 10.21656/1000-0887.440178
ZHANG Chengzhi, ZHENG Supei, CHEN Xue, et al. A 4th-order WENO-type entropy stable scheme for ideal magnetohydrodynamic equations[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1398-1412. (in Chinese) doi: 10.21656/1000-0887.440178
|
[14] |
MONAGHAN J J, GINGOLD R A. Shock simulation by the particle method SPH[J]. Journal of Computational Physics, 1983, 52(2): 374-389. doi: 10.1016/0021-9991(83)90036-0
|
[15] |
LI M K, ZHANG A M, PENG Y X, et al. An improved model for compressible multiphase flows based on smoothed particle hydrodynamics with enhanced particle regeneration technique[J]. Journal of Computational Physics, 2022, 458: 111106. doi: 10.1016/j.jcp.2022.111106
|
[16] |
MENG Z F, ZHANG A M, WANG P P, et al. A shock-capturing scheme with a novel limiter for compressible flows solved by smoothed particle hydrodynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 386: 114082. doi: 10.1016/j.cma.2021.114082
|
[17] |
WANG P P, ZHANG A M, MENG Z F, et al. A new type of WENO scheme in SPH for compressible flows with discontinuities[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 381: 113770. doi: 10.1016/j.cma.2021.113770
|
[18] |
SIROTKIN F V, YOH J J. A smoothed particle hydrodynamics method with approximate Riemann solvers for simulation of strong explosions[J]. Computers & Fluids, 2013, 88: 418-429.
|
[19] |
徐建于, 黄生洪. 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟[J]. 力学学报, 2019, 51(4): 998-1011.
XU Jianyu, HUANG Shenghong. Numerical simulation of cylindrical converging shock induced Richtmyer-Meshkov instability with SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 998-1011. (in Chinese)
|
[20] |
FULK D A, QUINN D W. An analysis of 1-D smoothed particle hydrodynamics kernels[J]. Journal of Computational Physics, 1996, 126(1): 165-180. doi: 10.1006/jcph.1996.0128
|
[21] |
LIU G R, LIU M B. Smoothed Particle Hydrodynamics: a Meshfree Particle Method[M]. Singapore: World Scientific Publishing, 2003.
|
[22] |
SIGALOTTI L D G, LÓPEZ H, TRUJILLO L. An adaptive SPH method for strong shocks[J]. Journal of Computational Physics, 2009, 228(16): 5888-5907. doi: 10.1016/j.jcp.2009.04.041
|
[23] |
DANAILA I, JOLY P, KABER S M, POSTEL M. An Introduction to Scientific Computing[M]. New York: Springer-Verlag, 2007.
|
[24] |
SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27(1): 1-31. doi: 10.1016/0021-9991(78)90023-2
|
[25] |
MONAGHAN J. SPH and Riemann solvers[J]. Journal of Computational Physics, 1997, 136(2): 298-307. doi: 10.1006/jcph.1997.5732
|
[26] |
WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173. doi: 10.1016/0021-9991(84)90142-6
|
[27] |
TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Berlin: Springer-Verlag, 2009.
|