Citation: | WANG Xiangyu, KE Peng, DU Feng. Research on the Dynamic Contact Angle Model for the Droplet Impact Process[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1133-1146. doi: 10.21656/1000-0887.440282 |
[1] |
ZHU Y T, WANG Z L L, LIU X L, et al. Anti-icing/de-icing mechanism and application progress of bio-inspired surface for aircraft[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 39(5): 542-554.
|
[2] |
林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.
LIN Guiping, BU Xueqin, SHEN Xiaobin, et al. Aircraft Icing and Anti-icing Technology[M]. Beijing: Beihang University Press, 2016. (in Chinese)
|
[3] |
张旋. 过冷水滴的结冰与碰撞及其耦合特性研究[D]. 北京: 清华大学, 2019.
ZHANG Xuan. Research on freezing and impact processes of supercooled water droplet and their coupling characteristics[D]. Beijing: Tsinghua University, 2019. (in Chinese)
|
[4] |
王凯宇, 庞祥龙, 李晓光. 超疏水表面液滴的振动特性及其与液滴体积的关系[J]. 物理学报, 2021, 70(7): 076801.
WANG Kaiyu, PANG Xianglong, LI Xiaoguang. Oscillation properties of water droplets on a superhydrophobic surface and their correlations with droplet volume[J]. Acta Physica Sinica, 2021, 70(7): 076801. (in Chinese)
|
[5] |
PANG X L, DUAN M, LIU H, et al. Oscillation-induced mixing advances the functionality of liquid marble microreactors[J]. ACS Applied Materials & Interfaces, 2022, 14: 11999.
|
[6] |
严裕, 娄钦, 陈家豪. 双液滴在具有接触角滞后性微通道内的运动行为研究[J]. 应用数学和力学, 2023, 44(3): 304-318. doi: 10.21656/1000-0887.430165
YAN Yu, LOU Qin, CHEN Jiahao. Lattice Boltzmann study on the motion of dual droplets in microchannels with contact angle hysteresis[J]. Applied Mathematics and Mechanics, 2023, 44(3): 304-318. (in Chinese) doi: 10.21656/1000-0887.430165
|
[7] |
焦云龙, 刘小君, 逄明华, 等. 液滴平壁铺展过程中的滞后效应及力学机制研究[J]. 应用数学和力学, 2016, 37(1): 14-26. doi: 10.3879/j.issn.1000-0887.2016.01.002
JIAO Yunlong, LIU Xiaojun, PANG Minghua, et al. Study of contact angle hysteresis at moving contact lines based on CFD simulation and mechanical analysis[J]. Applied Mathematics and Mechanics, 2016, 37(1): 14-26. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.01.002
|
[8] |
LI X G, WANG Y Q, YANG Y, et al. Dynamic behavior of droplets under interfacial jamming of nanoparticles[J]. Applied Physics Letters, 2018, 113: 133702. doi: 10.1063/1.5045775
|
[9] |
MOHAMMAD K A, SUSZYNSKI W J. Physics of dynamic contact line: hydrodynamics theory versus molecular kinetic theory[J]. Fluids, 2022, 7(10): 1-19.
|
[10] |
GANESAN S. On the dynamic contact angle in simulation of impinging droplets with sharp interface methods[J]. Microfluidics and Nanofluidics, 2013, 14(3/4): 615-625.
|
[11] |
YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. doi: 10.1098/rstl.1805.0005
|
[12] |
HOFFMAN R L. A study of the advancing interface[J]. Journal of Colloid and Interface Science, 1975, 50(2): 228-241. doi: 10.1016/0021-9797(75)90225-8
|
[13] |
VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics, 1977, 11(5): 714-721. doi: 10.1007/BF01012963
|
[14] |
JIANG T S, SOO-GUN O H, SLATTERY J C. Correlation for dynamic contact angle[J]. Journal of Colloid and Interface Science, 1979, 69(1): 74-77. doi: 10.1016/0021-9797(79)90081-X
|
[15] |
BRACKE M, DE VOEGHT F, JOOS P. The kinetics of wetting: the dynamic contact angle[J]. Progress in Colloid & Polymer Science, 1989, 79: 142-149.
|
[16] |
SEEBERGH J E, BERG J C. Dynamic wetting in the low capillary number regime[J]. Chemical Engineering Science, 1992, 47(17/18): 4455-4464.
|
[17] |
BLAKE T D, BRACKE M, SHIKHMURZAEV Y D. Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle[J]. Physics of Fluids, 1999, 11(8): 1995-2007.
|
[18] |
COX R G. The dynamics of the spreading of liquids on a solid surface, part 1: viscous flow[J]. Journal of Fluid Mechanics, 1986, 168: 169-194.
|
[19] |
ŠIKALO Š, WILHELM H D, ROISMAN I V, et al. Dynamic contact angle of spreading droplets: experiments and simulations[J]. Physics of Fluids, 2005, 17(6): 062103.
|
[20] |
XIE P, DING H B, INGHAM D B, et al. Analysis and prediction of the gas-liquid interfacial area for droplets impact on solid surfaces[J]. Applied Thermal Engineering, 2020, 178: 115583.
|
[21] |
WENZEL R N. Resistance of solid surface to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
|
[22] |
CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40(10): 546-551.
|
[23] |
TUTEJA A, CHOI W, MA M L, et al. Designing superoleophobic surfaces[J]. Science, 2007, 318(5856): 1618-1622.
|
[24] |
LIU Y H, MOEVIUS L, XU X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10: 515-519.
|
[25] |
MOEVIUS L, LIU Y H, WANG Z K, et al. Pancake bouncing: simulations and theory and experimental verification[J]. Langmuir, 2014, 30: 13021-13032.
|
[26] |
DU J Y, WANG X, LI Y Z, et al. Maximum spreading of liquid droplets impact on concentric ring-textured surfaces: theoretical analysis and numerical simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127647.
|
[27] |
YANG C J, CAO W R, YANG Z. Study on dynamic behavior of water droplet impacting on super-hydrophobic surface with micro-pillar structures by VOF method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630: 127634.
|
[28] |
HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
|
[29] |
BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354.
|
[30] |
ŠIKALO Š, MARENGO M, TROPEA C, et al. Analysis of impact of droplets on horizontal surfaces[J]. Experimental Thermal and Fluid Science, 2002, 25(7): 503-510.
|
[31] |
CHEN B, ZHANG Y H, DAI Z F, et al. Experimental research on the dynamics of a train of droplets impacting, from droplets to liquid film, continuity and inheritance[J]. Energy, 2022, 256: 124670.
|
[32] |
章振宇, 张宸玮, 张鹏. 小韦伯数下液滴撞击光滑壁面的数值模拟[J]. 工程热物理学报, 2021, 42(12): 3296-3303.
ZHANG Zhenyu, ZHANG Chenwei, ZHANG Peng. Numerical simulation of droplet impacting on free slip wall under small Weber number[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3296-3303. (in Chinese)
|