Citation: | ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, SHI Yueqing, GUO Chengjie, LI Rui. Hamiltonian System-Based Analytical Solutions to Free Vibration Problems of Functionally Graded Rectangular Plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279 |
[1] |
KOIZUMI M. The concept of FGM[J]. Ceramic Transactions, 1993, 34: 3-10.
|
[2] |
THAI H T, KIM S E. A review of theories for the modeling and analysis of functionally graded plates and shells[J]. Composite Structures, 2015, 128: 70-86. doi: 10.1016/j.compstruct.2015.03.010
|
[3] |
PINGULKAR P, SURESHA B. Free vibration analysis of laminated composite plates using finite element method[J]. Polymers and Polymer Composites, 2016, 24(7): 529-538. doi: 10.1177/096739111602400712
|
[4] |
VINYAS M. A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods[J]. Composites (Part B): Engineering, 2019, 158: 286-301. doi: 10.1016/j.compositesb.2018.09.086
|
[5] |
CHEN M F, JIN G Y, YE T G, et al. An isogeometric finite element method for the in-plane vibration analysis of orthotropic quadrilateral plates with general boundary restraints[J]. International Journal of Mechanical Sciences, 2017, 133: 846-862. doi: 10.1016/j.ijmecsci.2017.09.052
|
[6] |
李情, 陈莘莘. 基于重构边界光滑离散剪切间隙法的复合材料层合板自由振动分析[J]. 应用数学和力学, 2022, 43(10): 1123-1132. doi: 10.21656/1000-0887.430109
LI Qing, CHEN Shenshen. Free vibration analysis of laminated composite plates based on the reconstructed edge-based smoothing DSG method[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1123-1132. (in Chinese) doi: 10.21656/1000-0887.430109
|
[7] |
BESKOS D E. Boundary element methods in dynamic analysis[J]. Applied Mechanics Reviews, 1987, 40(1): 1-23. doi: 10.1115/1.3149529
|
[8] |
NAJARZADEH L, MOVAHEDIAN B, AZHARI M. Free vibration and buckling analysis of thin plates subjected to high gradients stresses using the combination of finite strip and boundary element methods[J]. Thin-Walled Structures, 2018, 123: 36-47. doi: 10.1016/j.tws.2017.11.015
|
[9] |
CHEN J T, CHEN I L, CHEN K H, et al. A meshless method for free vibration analysis of circular and rectangular clamped plates using radial basis function[J]. Engineering Analysis With Boundary Elements, 2004, 28(5): 535-545. doi: 10.1016/S0955-7997(03)00106-1
|
[10] |
WANG J F, YANG J P, LAI S K, et al. Stochastic meshless method for nonlinear vibration analysis of composite plate reinforced with carbon fibers[J]. Aerospace Science and Technology, 2020, 105: 105919. doi: 10.1016/j.ast.2020.105919
|
[11] |
YOUNG D. Vibration of rectangular plates by the Ritz method[J]. Journal of Applied Mechanics: Transactions of the ASME, 1950, 17(4): 448-453. doi: 10.1115/1.4010175
|
[12] |
LEISSA A W. The free vibration of rectangular plates[J]. Journal of Sound and Vibration, 1973, 31(3): 257-293. doi: 10.1016/S0022-460X(73)80371-2
|
[13] |
QIN B, ZHONG R, WU Q Y, et al. A unified formulation for free vibration of laminated plate through Jacobi-Ritz method[J]. Thin-Walled Structures, 2019, 144: 106354. doi: 10.1016/j.tws.2019.106354
|
[14] |
鲍四元, 邓子辰. 薄板弯曲自由振动问题的高精度近似解析解及改进研究[J]. 应用数学和力学, 2016, 37(11): 1169-1180. doi: 10.21656/1000-0887.370005
BAO Siyuan, DENG Zichen. High-precision approximate analytical solutions for free bending vibrations of thin plates and an improvement[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1169-1180. (in Chinese) doi: 10.21656/1000-0887.370005
|
[15] |
王永福, 漆文凯, 沈承, 等. 弹性约束边界条件下矩形蜂窝夹芯板的自由振动分析[J]. 应用数学和力学, 2019, 40(6): 583-594. doi: 10.21656/1000-0887.390348
WANG Yongfu, QI Wenkai, SHEN Cheng, et al. Free vibration analysis of rectangular honeycomb-cored plates under elastically constrained boundary conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594. (in Chinese) doi: 10.21656/1000-0887.390348
|
[16] |
WANG X, BERT C W. A new approach in applying differential quadrature to static and free vibrational analyses of beams and plates[J]. Journal of Sound and Vibration, 1993, 162(3): 566-572. doi: 10.1006/jsvi.1993.1143
|
[17] |
TORNABENE F, LIVERANI A, CALIGIANA G. FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations[J]. International Journal of Mechanical Sciences, 2011, 53(6): 446-470. doi: 10.1016/j.ijmecsci.2011.03.007
|
[18] |
WANG Y, FENG C, YANG J, et al. Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113761. doi: 10.1016/j.cma.2021.113761
|
[19] |
ZHANG C Y, JIN G Y, YE T G, et al. Harmonic response analysis of coupled plate structures using the dynamic stiffness method[J]. Thin-Walled Structures, 2018, 127: 402-415. doi: 10.1016/j.tws.2018.02.014
|
[20] |
AKSU G, ALI R. Free vibration analysis of stiffened plates using finite-difference method[J]. Journal of Sound and Vibration, 1976, 48(1): 15-25. doi: 10.1016/0022-460X(76)90367-9
|
[21] |
QU W, HE H. A GFDM with supplementary nodes for thin elastic plate bending analysis under dynamic loading[J]. Applied Mathematics Letters, 2022, 124: 107664. doi: 10.1016/j.aml.2021.107664
|
[22] |
HIEN T D, NOH H C. Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 845-863. doi: 10.1016/j.cma.2017.02.007
|
[23] |
KUMAR S, RANJAN V, JANA P. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method[J]. Composite Structures, 2018, 197: 39-53. doi: 10.1016/j.compstruct.2018.04.085
|
[24] |
YIN S H, HALE J S, YU T T, et al. Isogeometric locking-free plate element: a simple first order shear deformation theory for functionally graded plates[J]. Composite Structures, 2014, 118: 121-138. doi: 10.1016/j.compstruct.2014.07.028
|
[25] |
THANG P T, LEE J. Free vibration characteristics of sigmoid-functionally graded plates reinforced by longitudinal and transversal stiffeners[J]. Ocean Engineering, 2018, 148: 53-61. doi: 10.1016/j.oceaneng.2017.11.023
|
[26] |
JHA D K, KANT T, SINGH R K. Free vibration response of functionally graded thick plates with shear and normal deformations effects[J]. Composite Structures, 2013, 96: 799-823. doi: 10.1016/j.compstruct.2012.09.034
|
[27] |
KIM J, ZUR K K, REDDY J N. Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates[J]. Composite Structures, 2019, 209: 879-888. doi: 10.1016/j.compstruct.2018.11.023
|
[28] |
高祥雨, 王壮壮, 马连生. 功能梯度板弯曲和自由振动分析的简单精化板理论[J]. 固体力学学报, 2023, 44(1): 96-108.
GAO Xiangyu, WANG Zhuangzhuang, MA Liansheng. A simple refined plate theory for bending and free vibration analysis of functionally graded plate[J]. Chinese Journal of Solid Mechanics, 2023, 44(1): 96-108. (in Chinese)
|
[29] |
BAFERANI A H, SAIDI A R, JOMEHZADEH E. An exact solution for free vibration of thin functionally graded rectangular plates[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2011, 225(3): 526-536. doi: 10.1243/09544062JMES2171
|
[30] |
FARSANGI M A A, SAIDI A R. Lévy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers[J]. Smart Materials and Structures, 2012, 21(9): 094017. doi: 10.1088/0964-1726/21/9/094017
|
[31] |
DEMIRHAN P A, TASKIN V. Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach[J]. Composites (Part B): Engineering, 2019, 160: 661-676. doi: 10.1016/j.compositesb.2018.12.020
|
[32] |
HU Z, YANG Y, ZHOU C, et al. On the symplectic superposition method for new analytic free vibration solutions of side-cracked rectangular thin plates[J]. Journal of Sound and Vibration, 2020, 489: 115695. doi: 10.1016/j.jsv.2020.115695
|
[33] |
HU Z, ZHOU C, NI Z, et al. New symplectic analytic solutions for buckling of CNT reinforced composite rectangular plates[J]. Composite Structures, 2023, 303: 116361. doi: 10.1016/j.compstruct.2022.116361
|
[34] |
XU D, XIONG S, MENG F, et al. An analytic model of transient heat conduction for bi-layered flexible electronic heaters by symplectic superposition[J]. Micromachines, 2022, 13(10): 1627. doi: 10.3390/mi13101627
|
[35] |
YANG Y, AN D, XU H, et al. On the symplectic superposition method for analytic free vibration solutions of right triangular plates[J]. Archive of Applied Mechanics, 2021, 91(1): 187-203. doi: 10.1007/s00419-020-01763-7
|
[36] |
杨雨诗, 安东琦, 倪卓凡, 等. 四角点支承四边自由矩形薄板屈曲问题的新解析解[J]. 计算力学学报, 2020, 37(5): 517-523.
YANG Yushi, AN Dongqi, NI Zhuofan, et al. A new analytic solution to the buckling problem of rectangular thin plates with four corners point-supported and four edges free[J]. Chinese Journal of Computional Mechaincs, 2020, 37(5): 517-523. (in Chinese)
|
[37] |
李锐, 田宇, 郑新然, 等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J]. 应用数学和力学, 2018, 39(8): 875-891. doi: 10.21656/1000-0887.390186
LI Rui, TIAN Yu, ZHENG Xinran, et al. A symplectic superposition method for bending problems of free-edge rectangular thick plates resting on elastic foundations[J]. Applied Mathematics and Mechanics, 2018, 39(8): 875-891. (in Chinese) doi: 10.21656/1000-0887.390186
|
[38] |
ZHANG D, ZHOU Y. A theoretical analysis of FGM thin plates based on physical neutral surface[J]. Computational Materials Science, 2008, 44(2): 716-720. doi: 10.1016/j.commatsci.2008.05.016
|