Volume 45 Issue 9
Sep.  2024
Turn off MathJax
Article Contents
WANG Senlin, LI Jinbao, MA Hongyan, LI Rui. Analytical Forced Vibration Solutions of Orthotropic Cantilever Rectangular Thin Plates With the Symplectic Superposition Method[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1117-1132. doi: 10.21656/1000-0887.440277
Citation: WANG Senlin, LI Jinbao, MA Hongyan, LI Rui. Analytical Forced Vibration Solutions of Orthotropic Cantilever Rectangular Thin Plates With the Symplectic Superposition Method[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1117-1132. doi: 10.21656/1000-0887.440277

Analytical Forced Vibration Solutions of Orthotropic Cantilever Rectangular Thin Plates With the Symplectic Superposition Method

doi: 10.21656/1000-0887.440277
  • Received Date: 2023-09-20
  • Rev Recd Date: 2023-10-26
  • Publish Date: 2024-09-01
  • The forced vibrations of orthotropic cantilever rectangular thin plates under harmonic loadings were investigated with the symplectic superposition method. The basic equations for the forced vibration of thin plates were introduced into the Hamiltonian system. The original problem was divided into some fundamental subproblems, and the analytical solutions of the subproblems were derived with the method of separation of variables and through eigenvector expansion in the symplectic space. The solution of the original problem was finally obtained by superposition. The main advantage of the symplectic superposition method is that the analytical solution can be obtained by step-by-step rigorous derivation, without any assumptions on the form of the solution, which breaks through the limitations of traditional semi-inverse methods. The numerical results calculated corresponding to different harmonic loads were compared with those obtained via the finite element method to verify the reliability and accuracy of the proposed method.
  • (Contributed by LI Rui, M.AMM Editorial Board)
  • loading
  • [1]
    ALFOONEH M, HAJABBASI M. Free and forced vibration analysis of thin and thick plates by the finite element method using Lagrange and heterosis elements and comparison of these elements[J]. WSEAS Transactions on Systems, 2007, 6(1): 235-241.
    [2]
    MEI C. A finite element method for nonlinear forced vibrations of rectangular plates[J]. AIAA Journal, 1985, 23(7): 1104-1110. doi: 10.2514/3.9044
    [3]
    NAYAK A, SINHA L, JENA T. Forced vibration analysis of laminated composite stiffened plates[J]. International Journal of Structural Engineering, 2021, 11(2): 173. doi: 10.1504/IJSTRUCTE.2021.114263
    [4]
    ALTINTA G, BAGCI M. Determination of the steady-state response of viscoelastically supported rectangular othotropic mass loaded plates by an energy-based finite difference method[J]. Journal of Vibration and Control, 2005, 11(12): 1535-1552. doi: 10.1177/1077546305061037
    [5]
    NAJARZADEH L, MOVAHEDIAN B, AZHARI M. Free vibration and buckling analysis of thin plates subjected to high gradients stresses using the combination of finite strip and boundary element methods[J]. Thin-Walled Structures, 2018, 123: 36-47. doi: 10.1016/j.tws.2017.11.015
    [6]
    HEUER R, IRSCHIK H. A boundary element method for eigenvalue problems of polygonal membranes and plates[J]. Acta Mechanica, 1987, 66(1/4): 9-20.
    [7]
    RODRIGUES J D, ROQUE C M C, FERREIRA A J M. An improved meshless method for the static and vibration analysis of plates[J]. Mechanics Based Design of Structures and Machines, 2013, 41(1): 21-39. doi: 10.1080/15397734.2012.680348
    [8]
    HOSSEINI S, RAHIMI G, ANANI Y. A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT[J]. Engineering Analysis With Boundary Elements, 2021, 125: 168-177. doi: 10.1016/j.enganabound.2020.12.016
    [9]
    王伟, 伊士超, 姚林泉. 分析复合材料层合板弯曲和振动的一种有效无网格方法[J]. 应用数学和力学, 2015, 36(12): 1274-1284. doi: 10.3879/j.issn.1000-0887.2015.12.006

    WANG Wei, YI Shichao, YAO Linquan. An effective meshfree method for bending and vibration analyses of laminated composite plates[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1274-1284. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.12.006
    [10]
    彭林欣, 张鉴飞, 陈卫. 基于3D连续壳理论和无网格法的任意壳受迫振动分析[J]. 固体力学学报, 2024, 45(2): 238-252.

    PENG Linxin, ZHANG Jianfei, CHEN Wei. Forced vibration analysis of arbitrary shells based on 3D continuous shell theory and meshless method[J]. Chinese Journal of Solid Mechanics, 2024, 45(2): 238-252. (in Chinese)
    [11]
    ZAMANIFAR H, SARRAMI-FOROUSHANI S, AZHARI M. Static and dynamic analysis of corrugated-core sandwich plates using finite strip method[J]. Engineering Structures, 2019, 183: 30-51. doi: 10.1016/j.engstruct.2018.12.102
    [12]
    SHEIKH A H, MUSHOPADYAY M. Forced vibration of plates with elastically restrained edges by the spline finite strip method[J]. JSME International Journal (Series C): Dynamics Control Robotics Design and Manufacturing, 1993, 36(3): 301-306. doi: 10.1299/jsmec1993.36.301
    [13]
    YUAN W, DAWE D J. Free vibration and stability analysis of stiffened sandwich plates[J]. Composite Structures, 2004, 63(1): 123-137. doi: 10.1016/S0263-8223(03)00139-9
    [14]
    陈明飞, 刘坤鹏, 靳国永, 等. 面内功能梯度三角形板等几何面内振动分析[J]. 应用数学和力学, 2020, 41(2): 156-170. doi: 10.21656/1000-0887.400171

    CHEN Mingfei, LIU Kunpeng, JIN Guoyong, et al. Isogeometric in-plane vibration analysis of functionally graded triangular plates[J]. Applied Mathematics and Mechanics, 2020, 41(2): 156-170. (in Chinese) doi: 10.21656/1000-0887.400171
    [15]
    LAURA P A A, DURAN R. A note on forced vibrations of a clamped rectangular plate[J]. Journal of Sound and Vibration, 1975, 42(1): 129-135. doi: 10.1016/0022-460X(75)90307-7
    [16]
    SUSEMIHL E A, LAURA P A A. Forced vibrations of thin, elastic, rectangular plates with edges elastically restrained against rotation[J]. Journal of Ship Research, 1977, 21(1): 24-29. doi: 10.5957/jsr.1977.21.1.24
    [17]
    GORMAN D J. Dynamic response of a rectangular plate to a bending moment distributed along the diagonal[J]. AIAA Journal, 1982, 20(11): 1616-1621. doi: 10.2514/3.7994
    [18]
    付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅰ): 四边固定的矩形板和三边固定的矩形板[J]. 应用数学和力学, 1989, 10(8): 693-714. http://www.applmathmech.cn/article/id/3613

    FU Baolian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates (Ⅰ): rectangular plates with four clamped edges and with three clamped edges[J]. Applied Mathematics and Mechanics, 1989, 10(8): 693-714. (in Chinese) http://www.applmathmech.cn/article/id/3613
    [19]
    付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅱ): 二邻边固定的矩形板[J]. 应用数学和力学, 1990, 11(11): 977-988. http://www.applmathmech.cn/article/id/3452

    FU Baolian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates (Ⅱ): rectangular plates with two adjacent clamped edges[J]. Applied Mathematics and Mechanics, 1990, 11(11): 977-988. (in Chinese) http://www.applmathmech.cn/article/id/3452
    [20]
    付宝连, 李农. 弹性矩形薄板受迫振动的功的互等定理法(Ⅲ): 悬臂矩形板[J]. 应用数学和力学, 1991, 12(7): 621-638. http://www.applmathmech.cn/article/id/3354

    FU Baolian, LI Nong. The method of the reciprocal theorem of forced vibration for the elastic thin rectangular plates (Ⅲ): cantilever rectangular plates[J]. Applied Mathematics and Mechanics, 1991, 12(7): 621-638. (in Chinese) http://www.applmathmech.cn/article/id/3354
    [21]
    XING Y F, LIU B. New exact solutions for free vibrations of thin orthotropic rectangular plates[J]. Composite Structures, 2009, 89(4): 567-574. doi: 10.1016/j.compstruct.2008.11.010
    [22]
    CHEN Y, YUE X. Forced vibration of bending thick rectangular plates with different boundary conditions under concentrated load[J]. Chinese Journal of Computational Mechanics, 2022, 39(6): 845-851.
    [23]
    陈英杰, 程剑锋, 陈杰, 等. 集中谐载力作用下三边固定一边自由板的受迫振动[J]. 动力学与控制学报, 2005, 3(3): 47-51.

    CHEN Yingjie, CHENG Jianfeng, CHEN Jie, et al. The forced vibration of the plate with three clamped and the other free under concentrated load[J]. Journal of Dynamics and Control, 2005, 3(3): 47-51. (in Chinese)
    [24]
    LI R, ZHONG Y, LI M. Analytic bending solutions of free rectangular thin plates resting on elastic foundations by a new symplectic superposition method[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469(2153): 20120681. doi: 10.1098/rspa.2012.0681
    [25]
    ZHENG X, SUN Y, HUANG M, et al. Symplectic superposition method-based new analytic bending solutions of cylindrical shell panels[J]. International Journal of Mechanical Sciences, 2019, 152: 432-442. doi: 10.1016/j.ijmecsci.2019.01.012
    [26]
    LI R, ZHENG X, WANG P, et al. New analytic free vibration solutions of orthotropic rectangular plates by a novel symplectic approach[J]. Acta Mechanica, 2019, 230(9): 3087-3101. doi: 10.1007/s00707-019-02448-1
    [27]
    XU D, NI Z, LI Y, et al. On the symplectic superposition method for free vibration of rectangular thin plates with mixed boundary constraints on an edge[J]. Theoretical and Applied Mechanics Letters, 2021, 11(5): 100293. doi: 10.1016/j.taml.2021.100293
    [28]
    ZHOU C, AN D, ZHOU J, et al. On new buckling solutions of moderately thick rectangular plates by the symplectic superposition method within the Hamiltonian-system framework[J]. Applied Mathematical Modelling, 2021, 94: 226-241. doi: 10.1016/j.apm.2021.01.020
    [29]
    HU Z, ZHENG X, AN D, et al. New analytic buckling solutions of side-cracked rectangular thin plates by the symplectic superposition method[J]. International Journal of Mechanical Sciences, 2021, 191: 106051. doi: 10.1016/j.ijmecsci.2020.106051
    [30]
    LEISSA A W. Vibration of plates: NASA-SP-160[R]. 1969.
    [31]
    YAO W, ZHONG W, LIM C W. Symplectic Elasticity[M]. Singapore: World Scientific, 2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(10)

    Article Metrics

    Article views (185) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return