Volume 45 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
HAN Lifu, LIU Tiejun. The 2D Adhesive Contact of the Functionally Graded Piezoelectric Coating Under a Conducting Indenter[J]. Applied Mathematics and Mechanics, 2024, 45(2): 227-244. doi: 10.21656/1000-0887.440238
Citation: HAN Lifu, LIU Tiejun. The 2D Adhesive Contact of the Functionally Graded Piezoelectric Coating Under a Conducting Indenter[J]. Applied Mathematics and Mechanics, 2024, 45(2): 227-244. doi: 10.21656/1000-0887.440238

The 2D Adhesive Contact of the Functionally Graded Piezoelectric Coating Under a Conducting Indenter

doi: 10.21656/1000-0887.440238
  • Received Date: 2023-08-08
  • Rev Recd Date: 2023-10-31
  • Publish Date: 2024-02-01
  • Nano-indentation experiments are an important means of studying the mechanical properties and surface morphology of materials. With the decrease of the contact area, the adhesion between the indenter and the contact surface of the specimen cannot be ignored. Therefore, the adhesion effect plays an important role in the contact problem under the action of the indenter. The functional graded piezoelectric material (FGPM) has the advantages of both graded and piezoelectric materials, and can effectively avoid contact damage and failure of coatings. The adhesive contact problem of FGPMs under conducting indenters was studied. With exponentially changing material parameters of the FGPM coating, based on the Maugis adhesive model, the control singular integral equation for the 2D frictionless adhesive contact problem of the FGPM coating under the conducting indenter, was obtained through the Fourier integral transform, and the Erdogan-Gupta numerical method was used to solve the equation. The effects of the adhesive stress, the graded parameter and the charge of the indenter on the electro-mechanical coupling response were obtained. The results provide a theoretical basis for improving the contact behavior of material surfaces with FGPM coatings, and help design piezoelectric structures and devices.
  • loading
  • [1]
    BRADLEY R S. The cohesive force between solid surface and the surface energy of solids[J]. Philosophical Magazine, 1932, 13: 853-862.
    [2]
    JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Roy Society London A, 1971, 324: 301-313. doi: 10.1098/rspa.1971.0141
    [3]
    DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326. doi: 10.1016/0021-9797(75)90018-1
    [4]
    MAUGIS D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model[J]. Journal of Colloid Interface Science, 1992, 150(1): 243-269. doi: 10.1016/0021-9797(92)90285-T
    [5]
    GREENWOOD J A, JOHNSON K L. An alternative to the Maugis model of adhesion between elastic spheres[J]. Journal of Physics D: Applied Physics, 1998, 31(22): 3279-3290. doi: 10.1088/0022-3727/31/22/017
    [6]
    CHEN Z R, YU S W. Micro-scale adhesive contact of a spherical rigid punch on a piezoelectric half-space[J]. Composites Science and Technology, 2005, 65(9): 1372-1381. doi: 10.1016/j.compscitech.2004.12.007
    [7]
    SERGICI A O, ADAMS G G, MVFTV S. Adhesion in the contact of a spherical indenter with a layered elastic half-space[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(9): 1843-1861. doi: 10.1016/j.jmps.2006.03.005
    [8]
    CHEN S H, YAN C, SOH A. Adhesive behavior of two-dimensional power-law graded materials[J]. International Journal of Solids and Structures, 2009, 46(18/19): 3398-3404.
    [9]
    CHEN S H, YAN C, ZHANG P, et al. Mechanics of adhesive contact on a power-law graded elastic half-space[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(9): 1437-1448. doi: 10.1016/j.jmps.2009.06.006
    [10]
    JIN F, GUO X. Non-slipping adhesive contact of a rigid cylinder on an elastic power-law graded half-space[J]. International Journal of Solids and Structures, 2010, 47(11/12): 1508-1521.
    [11]
    GUO X, JIN F, GAO H J. Mechanics of non-slipping adhesive contact on a power-law graded elastic half-space[J]. International Journal of Solids and Structures, 2011, 48(18): 2565-2575. doi: 10.1016/j.ijsolstr.2011.05.008
    [12]
    JIN F, GUO X, GAO H J. Adhesive contact on power-law graded elastic solids: the JKR-DMT transition using a double-Hertz model[J]. Journal of the Mechanics and Physics Solids, 2013, 61(12): 2473-2492. doi: 10.1016/j.jmps.2013.07.015
    [13]
    JIN F, GUO X. Mechanics of axisymmetric adhesive contact of rough surfaces involving power-law graded materials[J]. Journal of the Mechanics and Physics Solids, 2013, 50(20/21): 3375-3386.
    [14]
    靳凡. 先进功能材料的微尺度黏附接触力学研究[D]. 大连: 大连理工大学, 2013.

    JIN Fan. Mechanics of micro-scale adhesive contact on advanced functional materials[D]. Dalian: Dalian University of Technology, 2013. (in Chinese)
    [15]
    GUO X, JIN F. A generalized JKR-model for two-dimensional adhesive contact of transversely isotropic piezoelectric half-space[J]. Journal of the Mechanics and Physics Solids, 2009, 46(20): 3607-3619.
    [16]
    ZHU X H, MENG Z Y. Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator[J]. Sensors and Actuators A: Physical, 1995, 48(3): 169-176. doi: 10.1016/0924-4247(95)00996-5
    [17]
    KE L L, YANG J, KITIPORNCHAI S, et al. Frictionless contact analysis of a functionally graded piezoelectric layered half-plane[J]. Smart Materials and Structures, 2008, 17(2): 025003. doi: 10.1088/0964-1726/17/2/025003
    [18]
    KE L L, YANG J, KITIPORNCHAI S, et al. Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-plane under a rigid punch[J]. International Journal of Solids and Structures, 2008, 45(11/12): 3313-3333.
    [19]
    LIU T J, ZHANG C Z. Axisymmetric conducting indenter on a functionally graded piezoelectric coating[J]. International Journal of Mechanical Sciences, 2016, 115/116: 34-44. doi: 10.1016/j.ijmecsci.2016.06.008
    [20]
    LIU T J, ZHANG C Z, WANG Y S. Analysis of axisymmetric indentation of functionally graded piezoelectric coating or substrate systems under an insulator indenter[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(1): 23-34. doi: 10.1177/1045389X16642305
    [21]
    LIU T J, LI P X, ZHANG C Z. On contact problem with finite friction for a graded piezoelectric coating under an insulating spherical indenter[J]. International Journal of Engineering Science, 2017, 121: 1-13. doi: 10.1016/j.ijengsci.2017.08.001
    [22]
    SU J, KE L L, WANG Y S. Axisymmetric partial slip contact of a functionally graded piezoelectric coating under a conducting punch[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(4): 1925-1940.
    [23]
    苏洁. 功能梯度压电材料的摩擦接触分析[D]. 北京: 北京交通大学, 2018.

    SU Jie. Frictional contact analysis of functionally graded piezoelectric materials[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [24]
    刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正n边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2020, 41(7): 713-724. doi: 10.21656/1000-0887.400334

    LIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n-polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2020, 41(7): 713-724. (in Chinese) doi: 10.21656/1000-0887.400334
    [25]
    马占洲, 刘铁军. 基于层合板模型的梯度压电涂层Reissner-Sagoci问题研究[J]. 力学季刊, 2022, 43(4): 876-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX202204014.htm

    MA Zhanzhou, LIU Tiejun. Investigation on Reissner-Sagoci problem for functionally graded piezoelectric coating based on laminate model[J]. Chinese Quarterly of Mechanics, 2022, 43(4): 876-888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX202204014.htm
    [26]
    代文鑫, 刘铁军. 导电压头作用下的多层功能梯度压电材料涂层二维接触问题研究[J]. 应用数学和力学, 2023, 44(3): 282-303. doi: 10.21656/1000-0887.430187

    DAI Wenxin, LIU Tiejun. Investigation on the 2D contact of multilayer functionally graded piezoelectric material coating under conducting indenters[J]. Applied Mathematics and Mechanics, 2023, 44(3): 282-303. (in Chinese) doi: 10.21656/1000-0887.430187
    [27]
    BANEY J M, HUI C Y. A cohesive zone model for the adhesion of cylinders[J]. Journal of Adhesion Science and Technology, 1997, 11(3): 393-406. doi: 10.1163/156856197X00778
    [28]
    LI P X, LIU T J. Two-dimensional adhesive contact problem for graded coating based on a new multi-layer model[J]. IOP Conference Series: Materials Science and Engineering, 2018, 301(1): 012043.
    [29]
    LI P X, LIU T J. The adhesive contact problem between a graded coated half-space and a cylindrical indenter by using a Maugis model[J]. Journal of Adhesion science and Technology, 2018, 32(22): 1483291.
    [30]
    LI P X, LIU T J. The two-dimensional adhesive contact problem in the theory of couple stress elasticity[J]. Journal of Adhesion Science and Technology, 2020, 34(10): 1062-1082.
    [31]
    LI P X, LIU T J. The size effect in adhesive contact on gradient nanostructured coating[J]. Nanotechnology, 2021, 32(23): 235704. doi: 10.1088/1361-6528/abe9e6
    [32]
    LI P X, LIU T J. The axisymmetric contact in couple-stress elasticity taking into account adhesion[J]. Journal of Adhesion Science and Technology, 2021, 1: 50-71.
    [33]
    LI P X, LIU T J. Axisymmetric adhesive contact of multi-layer couple-stress elastic structures involving graded nanostructured materials[J]. Applied Mathematical Modelling, 2022, 111: 501-520 doi: 10.1016/j.apm.2022.06.044
    [34]
    李培兴. 考虑尺度效应的梯度纳米涂层的粘附与接触力学行为研究[D]. 呼和浩特: 内蒙古工业大学, 2022.

    LI Peixing. Study of adhesion and contact mechanics behavior for gradient nanocoatings considering scale effect[D]. Hohhot: Inner Mongolia University of Technology, 2022. (in Chinese)
    [35]
    ERDOGAN F, GUPTA G D, COOK T S. Numerical Solution of Singular Integral Equations[M]//Mechanics of Fracture. Noordhoff: Leyden, 1973.
    [36]
    ERDOGAN F, GUPTA G D. On the numerical solution of singular integral equations[J]. Quarterly of Applied Mathematics, 1972, 1: 525-534.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (290) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return