Volume 44 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
QIN Wenjin, HAN Tianxiang, ZHANG Zhendong, SUN Yuedong. Numerical Simulation Study of Spray Wall Impingement Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1087-1096. doi: 10.21656/1000-0887.440077
Citation: QIN Wenjin, HAN Tianxiang, ZHANG Zhendong, SUN Yuedong. Numerical Simulation Study of Spray Wall Impingement Combustion[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1087-1096. doi: 10.21656/1000-0887.440077

Numerical Simulation Study of Spray Wall Impingement Combustion

doi: 10.21656/1000-0887.440077
  • Received Date: 2023-03-23
  • Rev Recd Date: 2023-08-03
  • Publish Date: 2023-09-01
  • Fuel spray wall impingement is a common phenomenon in small high-pressure direct injection diesel engines. Fuel spray wall impingement influences the in-cylinder combustion process, and significantly impacts the engine's dynamics, fuel economy, and emissions. To better understand the combustion characteristics of fuel spray wall impingement, the numerical simulation was applied to calculate the process and explore this process. The results show that, during the 2-stage combustion process of spray wall impingement, the impingement promotes the radial development radius and the vortex height of the spray, enhances oil-gas mixing near the wall, and forms favorable conditions for low-temperature ignition near the wall. Low-temperature combustion reactions start in the near-wall region, where the mixture is relatively dilute, and then develop into the dense mixed gas area in the center of the impinging spray. As low-temperature oxidation combustion continues to release heat, the maximum temperature in the center of the impinging spray will gradually increase, and a large amount of CH2O will accumulate. Meanwhile, the impinging spray can cause the formation of a more concentrated mixture in the center of the impinging spray, and low-temperature combustion would release less heat, resulting in the incomplete combustion of some carbon, and increasing the amount of soot generated. Additionally, as high-temperature combustion proceeds, the temperature will continue rising, and the impinging spray will draw more oxygen, generating a large amount of NOx through oxidation reactions.
  • loading
  • [1]
    赵昶博. 混合动力专用发动机燃烧优化及其整车匹配[D]. 硕士学位论文. 长春: 吉林大学, 2020.

    ZHAO Changbo. Optimization of combustion for hybrid powertrain dedicated engines and their integration with vehicles[D]. Master Thesis. Changchun: Jilin University, 2020. (in Chinese)
    [2]
    李文栋, 张文普. 预混燃烧边界层回火的数理模型及研究进展[J]. 应用数学和力学, 2023, 44(1): 36-51. doi: 10.21656/1000-0887.430012

    LI Wendong, ZHANG Wenpu. The mathematical model and research progress of the boundary layer flashback in premixed combustion[J]. Applied Mathematics and Mechanic, 2023, 44(1): 36-51. (in Chinese) doi: 10.21656/1000-0887.430012
    [3]
    陈燕, 文春景. 车用柴油机的排放污染与控制[J]. 山东交通科技, 2005, 2: 77-78. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE200502027.htm

    CHEN Yan, WEN Chunjing. Emissions and control of pollutants from diesel engines used in vehicles[J]. Shandong Transportation Technology, 2005, 2: 77-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE200502027.htm
    [4]
    WACHTERS L H J, WESTERLING N A J. The heat transfer from a hot wall to impinging water drops in the spheroidal state[J]. Chemical Engineering Science, 1966, 21(11): 1047-1056. doi: 10.1016/0009-2509(66)85100-X
    [5]
    NABER J D, REITZ R D. Modeling engine spray/wall impingement[R]. SAE Technical Paper, 1988: 118-140.
    [6]
    BAI C X, RUSCHE H, GOSMAN A D. Modeling of gasoline spray impingement[J]. Atomization and Sprays, 2002, 12(1/3): 1-27.
    [7]
    O'ROURKE P J, AMSDEN A A. A spray/wall interaction submodel for the KIVA-3 wall film model[R]. SAE Technical Paper, 2000: 281-298.
    [8]
    HAN Z, XU Z, TRIGUI N. Spray/wall interaction models for multidimensional engine simulation[J]. International Journal of Engine Research, 2000, 1(1): 127-146. doi: 10.1243/1468087001545308
    [9]
    KUHNKE D. Spray/Wall Interaction Modelling by Dimensionless Data Analysis[M]. Shaker, 2004.
    [10]
    LI K, NISHIDA K, OGATA Y, et al. Effect of flat-wall impingement on diesel spray combustion[J]. Proceedings of the Institution of Mechanical Engineers(Part D): Journal of Automobile Engineering, 2015, 229(5): 535-549. doi: 10.1177/0954407014547242
    [11]
    LIU Y, YEOM J K, CHUNG S S. An experimental study on the effects of impingement-walls on the spray and combustion characteristics of SIDI CNG[J]. Journal of Mechanical Science and Technology, 2012, 26: 2239-2246. doi: 10.1007/s12206-012-0604-3
    [12]
    BEALE J C, REITZ R D. Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model[J]. Atomization and Sprays, 1999, 9(6): 623-650. doi: 10.1615/AtomizSpr.v9.i6.40
    [13]
    Convergent Science. CONVERGE_2.4_Manual[Z]. CONVERGE CFD Manual Series, 2018.
    [14]
    POMRANING E D. Development of Large Eddy Simulation Turbulence Models[M]. The University of Wisconsin-Madison, 2000.
    [15]
    龚升, 吴锤结. 超音速探测器-刚性盘-缝-带型降落伞系统的大涡模拟研究[J]. 应用数学和力学, 2021, 42(3): 233-247. doi: 10.21656/1000-0887.410274

    GONG Sheng, WU Chuijie. Large-eddy simulation of supersonic capsule-rigid disk-gap-band parachute systems[J]. Applied Mathematics and Mechanics, 2021, 42(3): 233-247. (in Chinese) doi: 10.21656/1000-0887.410274
    [16]
    AMSDEN A A, O'ROURKE P J, BUTLER T D. A computer program for chemically reactive flows with sprays: LA-11560-MS[R]. Los Alamos National Laboratory Report, 1989.
    [17]
    JIA M, PENG Z J, XIE M Z. Numerical investigation of soot reduction potentials with diesel homogeneous charge compression ignition combustion by an improved phenomenological soot model[J]. Proceedings of the Institution of Mechanical Engineers(Part D): Journal of Automobile Engineering, 2009, 223(3): 395-412. doi: 10.1243/09544070JAUTO993
    [18]
    HEYWOOD J B. Internal Combustion Engine Fundamentals[M]. New York: McGraw-Hill, 1988.
    [19]
    MONTANARO A, ALLOCCA L, MECCARIELLO G, et al. Schlieren and Mie scattering imaging system to evaluate liquid and vapor contours of a gasoline spray impacting on a heated wall[R]. SAE Technical Paper, 2015. DOI: https://doi.org/10.4271/2015-24-2473.
    [20]
    娄珏珏. 柴油喷雾碰壁着火及燃烧特性的试验研究[D]. 硕士学位论文. 北京: 北京理工大学, 2018.

    LOU Yuyu. Experimental study on diesel spray wall impingement ignition and combustion characteristics[D]. Master Thesis. Beijing: Beijing Institute of Technology, 2018. (in Chinese)
    [21]
    SKEEN S A, MANIN J, PICKETT L M. Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3167-3174.
    [22]
    PEI Y, SOM S, POMRANING E, et al. Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions[J]. Combustion and Flame, 2015, 162(12): 4442-4455.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (384) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return