Volume 43 Issue 5
May  2022
Turn off MathJax
Article Contents
WANG Qi, ZHU Yinxin, NIU Peixing, LIU Shaobao. Simulation of Aerodynamic Performances of Flexible Flapping Wing Airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155
Citation: WANG Qi, ZHU Yinxin, NIU Peixing, LIU Shaobao. Simulation of Aerodynamic Performances of Flexible Flapping Wing Airfoils[J]. Applied Mathematics and Mechanics, 2022, 43(5): 586-596. doi: 10.21656/1000-0887.430155

Simulation of Aerodynamic Performances of Flexible Flapping Wing Airfoils

doi: 10.21656/1000-0887.430155
  • Received Date: 2022-05-05
  • Rev Recd Date: 2022-05-16
  • Available Online: 2022-05-26
  • Publish Date: 2022-05-01
  • Compared with fixed wings, the flapping wing has a significant aerodynamic performance advantage at low speeds and low Reynolds numbers, which draws more and more attentions. But most previous studies focus on rigid flapping airfoils, the aerodynamic performances of flexible flapping airfoils are still unclear. A fluid-solid coupling model for the flexible elliptical airfoils was developed to analyze the flow field around the airfoil, the airfoil deformation and the aerodynamic characteristics of airfoils, at different wind speeds and attack angles. Compared with the rigid airfoil, the flexible airfoil can delay the shedding time of the wake vortex and reduce the oscillation frequency of the disturbance on the lift force. The flexible airfoil significantly suppresses the disturbance of the wake flow and reduces the oscillation amplitude of disturbance. Even, the airfoil disturbance oscillation can be completely eliminated at an appropriate Young’s modulus of the airfoil. These results provide a theoretical guidance for the design of soft aircraft.

  • loading
  • [1]
    孙茂, 吴江浩. 昆虫飞行的高升力机理和能耗[J]. 北京航空航天大学学报, 2003, 29(11): 970-977. (SUN Mao, WU Jianghao. Unsteady lift mechanisms and energetic in flying insects[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 970-977.(in Chinese) doi: 10.3969/j.issn.1001-5965.2003.11.004
    [2]
    ELLINGTON C P, BERG C V D, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(6610): 626-630. doi: 10.1038/384626a0
    [3]
    DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954-1960. doi: 10.1126/science.284.5422.1954
    [4]
    TANG J, VIIERU D, SHYY W. A study of aerodynamics of low Reynolds number flexible airfoils[C]//37th AIAA Fluid Dynamics Conference and Exhibit. Miami, USA, 2007.
    [5]
    VISBAL M R, GORDNIER R E, GALBRAITH M C. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers[J]. Experiments in Fluids, 2009, 46(5): 903-922. doi: 10.1007/s00348-009-0635-4
    [6]
    张兴伟, 周超英, 谢鹏. 扑翼柔性变形对悬停气动特性影响的数值研究[J]. 哈尔滨工业大学学报, 2012, 44(1): 115-119.

    ZHANG Xingwei, ZHOU Chaoying, XIE Peng. Numerical study on the effect of flapping wing deformation on aerodynamic performance in hovering flight[J]. Journal of Harbin Institute of Technology, 2012, 44(1): 115-119. (in Chinese)
    [7]
    王姝歆, 周建华, 颜景平. 微小型仿生飞行机器人柔性翅的仿生设计与实验研究[J]. 实验流体力学, 2006, 20(1): 75-79. (WANG Shuxin, ZHOU Jianhua, YAN Jingping. Bionic design and experiment on flexible wings of a bionic flying micro-robot[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 75-79.(in Chinese) doi: 10.3969/j.issn.1672-9897.2006.01.018
    [8]
    KANG W, ZHANG J Z, LEI P F, et al. Computation of unsteady viscous flow around a locally flexible airfoil at low Reynolds number[J]. Journal of Fluids and Structures, 2014, 46: 42-58. doi: 10.1016/j.jfluidstructs.2013.12.010
    [9]
    陶真新, 李绍斌, 宋西镇. 低雷诺数下柔性翼型气动性能分析[J]. 力学与实践, 2017, 39(2): 145-151.

    TAO Zhenxin, LI Shaobin, SONG Xizhen. The aerodynamic performance of a flexible airfoil at low Reynolds number[J]. Mechanics in Engineering, 2017, 39(2): 145-151. (in Chinese)
    [10]
    PESAVENTO U, WANG Z J. Flapping wing flight can save aerodynamic power compared to steady flight[J]. Physical Review Letter, 2009, 103(11): 118102. doi: 10.1103/PhysRevLett.103.118102
    [11]
    杨金广, 吴虎. 双方程k-ω SST湍流模型的显式耦合求解及其在叶轮机械中的应用[J]. 航空学报, 2014, 35(1): 116-124. (YANG Jinguang, WU Hu. Explicit coupled solution of two-equation k-ω SST turbulence model and its application in turbomachinery flow simulation[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 116-124.(in Chinese)
    [12]
    MENTER F R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]//AIAA 23rd Fluid Dynamics, Plasmadynamics, and Leaders Conference. Orlando, USA, 1993.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (1056) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return