Volume 43 Issue 5
May  2022
Turn off MathJax
Article Contents
GUO Fan, YANG Cao, GUO Rui, JIANG Wei. Enhancement Strategies for Mechanical Robustness of Carbon Aerogels and Their Applications[J]. Applied Mathematics and Mechanics, 2022, 43(5): 499-514. doi: 10.21656/1000-0887.430062
Citation: GUO Fan, YANG Cao, GUO Rui, JIANG Wei. Enhancement Strategies for Mechanical Robustness of Carbon Aerogels and Their Applications[J]. Applied Mathematics and Mechanics, 2022, 43(5): 499-514. doi: 10.21656/1000-0887.430062

Enhancement Strategies for Mechanical Robustness of Carbon Aerogels and Their Applications

doi: 10.21656/1000-0887.430062
  • Received Date: 2022-02-28
  • Rev Recd Date: 2022-04-06
  • Available Online: 2022-04-20
  • Publish Date: 2022-05-01
  • As a newly emerging light porous material, carbon aerogels are a class of carbonaceous solid materials with high porosity, low density and excellent environmental stability. With the combination of high elasticity, high energy absorption, as well as special properties such as shock absorption, sound absorption and electromagnetic shielding, carbon aerogels are both functional and structural, and widely applied in the fields of flexible sensors, energy equipment, acoustic equipment and environmental protection. However, the existing general conflicts between the mechanical robustness and the intrinsic sparse network in porous aerogel materials have been a common challenge faced by researchers in fields of material science, solid mechanics, design, application and so on. Good robustness could ensure the structural integrity and performance stability of aerogels in the application process, while the sparse network is the prerequisite to ensure the lightweight and porous structure of aerogels. Here, the recent enhancement strategies for the mechanical robustness, including cell-wall strengthening, cell-wall orientation, pore topology controlling and joint reinforcement, were discussed. Specially, the advanced design principles to realize the tensile elasticity in ultra-light all-carbon aerogels without intrinsic stretchable elastomers, were summarized. In addition, the recent applications of robust carbon aerogels were reviewed and the problems to be solved in this field were listed.

  • loading
  • [1]
    PEKALA R W, MAYER S T, KASCHMITTER J L, et al. Carbon Aerogels: an Update on Structure, Properties, and Applications[M]//Sol-Gel Processing and Applications. Boston, MA: Springer, 1994: 369-377.
    [2]
    PEKALA R W, ALVISO C T. Carbon aerogels and xerogels[C]//Materials Research Society Symposia Proceedings. 1999, 270. DOI: 10.1557/PROC-270-3.
    [3]
    PEKALA R W, ALVISO C T, KONG F M, et al. Aerogels derived from multifunctional organic monomers[J]. Journal of Non-Crystalline Solids, 1992, 145: 90-98. doi: 10.1016/S0022-3093(05)80436-3
    [4]
    FUNG A W P, WANG Z H, LU K, et al. Characterization of carbon aerogels by transport measurements[J]. Journal of Materials Research, 1993, 8: 1875. doi: 10.1557/JMR.1993.1875
    [5]
    HANZAWA Y, KANEKO K, PEKALA R W, et al. Activated carbon aerogels[J]. Langmuir, 1996, 12(26): 61-67.
    [6]
    IIJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363: 603-605. doi: 10.1038/363603a0
    [7]
    KROTO H W, HEATH J R, OBRIEN S C, et al. C60: buckminsterfullerene[J]. Nature, 1985, 318: 162-163. doi: 10.1038/318162a0
    [8]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666-669. doi: 10.1126/science.1102896
    [9]
    ZHAO J H, WEI N, FAN Z Z, et al. The mechanical properties of three types of carbon allotropes[J]. Nanotechnology, 2013, 24(9): 095702. doi: 10.1088/0957-4484/24/9/095702
    [10]
    EVEN W R, CROCKER R W, HUNTER M C, et al. Surface and near-surface structure in carbon microcellular materials produced from organic aerogels and xerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 191-199. doi: 10.1016/0022-3093(95)00061-5
    [11]
    SCHWERTFEGER F, SCHUBERT U. Generation of carbonaceous structures in silica aerogel[J]. Chemistry of Materials, 1995, 7(10): 1909-1914. doi: 10.1021/cm00058a023
    [12]
    WANG J, ELLSWORTH M. Graphene aerogels[J]. ECS Transactions, 2009, 19(5): 241. doi: 10.1149/1.3119548
    [13]
    WORSLEY M A, PAUZAUSKIE P J, OLSON T Y, et al. Synthesis of graphene aerogel with high electrical conductivity[J]. Journal of the American Chemical Society, 2010, 132(40): 14067-14069. doi: 10.1021/ja1072299
    [14]
    ZOU J H, LIU J H, KARAKOTI A S, et al. Ultralight multiwalled carbon nanotube aerogel[J]. ACS Nano, 2010, 4(12): 7293-7302. doi: 10.1021/nn102246a
    [15]
    BRYNING M B, MILKIE D E, ISLAM M F, et al. Carbon nanotube aerogels[J]. Advanced Materials, 2007, 19(5): 661-664. doi: 10.1002/adma.200601748
    [16]
    PAUZAUSKIE P J, CROWHURST J C, WORSLEY M A, et al. Synthesis and characterization of a nanocrystalline diamond aerogel[J]. Physical and Life Sciences Directorate, 2011, 108(21): 8550-8553.
    [17]
    KHARISOVA O V, IBARRA TORRES C E, GONZÁLEZ L T, et al. All-carbon hybrid aerogels: synthesis, properties, and applications[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16258-16286.
    [18]
    RITCHIE R O. The conflicts between strength and toughness[J]. Nature Materials, 2011, 10(11): 817-822. doi: 10.1038/nmat3115
    [19]
    WIENER M, REICHENAUER G, BRAXMEIER S, et al. Carbon aerogel-based high-temperature thermal insulation[J]. International Journal of Thermophysics, 2009, 30(4): 1372-1385. doi: 10.1007/s10765-009-0595-1
    [20]
    ZHONG J, MENG J, GUI X C, et al. Nanocarbon aerogel complexes inspired by the leaf structure[J]. Carbon, 2014, 77: 637-644. doi: 10.1016/j.carbon.2014.05.068
    [21]
    HU E, SHANG S, TAO X M, et al, Regeneration and reuse of highly polluting textile dyeing effluents through catalytic ozonation with carbon aerogel catalysts[J]. Journal of Cleaner Production, 2016, 137: 1055-1065.
    [22]
    PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. doi: 10.1016/j.pmatsci.2013.03.005
    [23]
    FRACKOWIAK E, BEGUIN F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950. doi: 10.1016/S0008-6223(00)00183-4
    [24]
    ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531. doi: 10.1039/b813846j
    [25]
    SALIMIAN S, ZADHOUSH A, NAEIMIRAD M, et al. A review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites[J]. Polymer Composites, 2018, 39(10): 3383-3408. doi: 10.1002/pc.24412
    [26]
    ASHBY M F, EVANS T, FLECK N A, et al. Metal Foams: a Design Guide[M]. Elsevier, 2000.
    [27]
    GEIM A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534. doi: 10.1126/science.1158877
    [28]
    YANG H S, ZHANG T P, JIANG M, et al. Ambient pressure dried graphene aerogels with superelasticity and multifunctionality[J]. Journal of Materials Chemistry A, 2015, 3(38): 19268-19272. doi: 10.1039/C5TA06452J
    [29]
    WAN S J, CHEN Y, FANG S L, et al. High-strength scalable graphene sheets by freezing stretch-induced alignment[J]. Nature Materials, 2021, 20(5): 624-631. doi: 10.1038/s41563-020-00892-2
    [30]
    ZHOU T Z, CHENG Q F. Chemical strategies for making strong graphene materials[J]. Angewandte Chemie International Edition, 2021, 60(34): 18397-18410. doi: 10.1002/anie.202102761
    [31]
    XU X, ZHANG Q Q, YU Y K, et al. Naturally dried graphene aerogels with superelasticity and tunable Poisson’s ratio[J]. Advanced Materials, 2016, 28(41): 9223-9230. doi: 10.1002/adma.201603079
    [32]
    SUN H Y, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560. doi: 10.1002/adma.201204576
    [33]
    WU D C, CHEN X, LU S H, et al. Study on synergistic effect of ordered mesoporous carbon and carbon aerogel during electrochemical charge-discharge process[J]. Microporous and Mesoporous Materials, 2010, 131(1/3): 261-264.
    [34]
    SUN W, GAO G H, DU Y C, et al. A facile strategy for fabricating hierarchical nanocomposites of V2O5 nanowire arrays on a three-dimensional N-doped graphene aerogel with a synergistic effect for supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(21): 9938-9947. doi: 10.1039/C8TA01448E
    [35]
    YAO X, GUO G L, ZHAO Y, et al. Synergistic effect of mesoporous Co3O4 nanowires confined by N-doped graphene aerogel for enhanced lithium storage[J]. Small, 2016, 12(28): 3849-3860. doi: 10.1002/smll.201600632
    [36]
    QIU L, LIU J Z, CHANG S L Y, et al. Biomimetic superelastic graphene-based cellular monoliths[J]. Nature Communications, 2012, 3(1): 1241.
    [37]
    HU H, ZHAO Z B, WAN W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials, 2013, 25: 2219. doi: 10.1002/adma.201204530
    [38]
    DEVILLE S. Freeze-casting of porous ceramics: a review of current achievements and issues[J]. Advanced Engineering Materials, 2008, 10(3): 155-169. doi: 10.1002/adem.200700270
    [39]
    RICE R W. Porosity of Ceramics: Properties and Applications[M]. New York: CRC Press, 1998.
    [40]
    OHJI T, FUKUSHIMA M. Macro-porous ceramics: processing and properties[J]. International Materials Reviews, 2012, 57(2): 115-131. doi: 10.1179/1743280411Y.0000000006
    [41]
    BAI H, CHEN Y, DELATTRE B, et al. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients[J]. Science Advances, 2015, 1(11): e1500849. doi: 10.1126/sciadv.1500849
    [42]
    GAO H L, ZHU Y B, MAO L B, et al. Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure[J]. Nature Communications, 2016, 7(1): 12920.
    [43]
    WANG C, CHEN X, WANG B, et al. Freeze-casting produces a graphene oxide aerogel with a radial and centrosymmetric structure[J]. ACS Nano, 2018, 12(6): 5816-5825. doi: 10.1021/acsnano.8b01747
    [44]
    ASHBY M F. The properties of foams and lattices[J]. Philosophical Transactions of the Royal Society A, 2006, 364(1838): 15-30. doi: 10.1098/rsta.2005.1678
    [45]
    GIBSON L J. Mechanical behavior of metallic foams[J]. Annual Reviews of Materials Science, 2000, 30(1): 191-227. doi: 10.1146/annurev.matsci.30.1.191
    [46]
    OH M J, LEE J H, YOO P J. Graphene-based ultralight compartmentalized isotropic foams with an extremely low thermal conductivity of 5.75 mW·m–1·K–1[J]. Advanced Functional Materials, 2021, 31(5): 2007392. doi: 10.1002/adfm.202007392
    [47]
    BARG S, PEREZ F M, NI N, et al. Mesoscale assembly of chemically modified graphene into complex cellular networks[J]. Nature Communications, 2014, 5(1): 4328.
    [48]
    YANG H S, LI Z L, LU B, et al. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications[J]. ACS Nano, 2018, 12(11): 11407-11416. doi: 10.1021/acsnano.8b06380
    [49]
    YANG H S, LI Z L, SUN G Q, et al. Superplastic air-dryable graphene hydrogels for wet-press assembly of ultrastrong superelastic aerogels with infinite macroscale[J]. Advanced Functional Materials, 2019, 29(26): 1901917. doi: 10.1002/adfm.201901917
    [50]
    YEO S J, OH M J, JUN H M, et al. A plesiohedral cellular network of graphene bubbles for ultralight, strong, and superelastic materials[J]. Advanced Materials, 2018, 30(45): 1802997. doi: 10.1002/adma.201802997
    [51]
    LEE J H, OH M J, YOO P J. Broad tunability in mechanical properties of closed cellular foams using micro-bubble assembly of graphene/silica nanocomposites[J]. Materials & Design, 2021, 202: 109558.
    [52]
    CHHOWALLA M, JARIWALA D. Hyperbolic 3D architectures with 2D ceramics[J]. Science, 2019, 363(6428): 694-695. doi: 10.1126/science.aaw5670
    [53]
    XU X, ZHANG Q, HAO M, et al. Double-negative-index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363(6428): 723-727. doi: 10.1126/science.aav7304
    [54]
    JIANG Y Q, XU Z, HUANG T Q, et al. Direct 3D printing of ultralight graphene oxide aerogel microlattices[J]. Advanced Functional Materials, 2018, 28(16): 1707024. doi: 10.1002/adfm.201707024
    [55]
    ZHANG Y Y, ZHU G M, DONG B Q, et al. Interfacial jamming reinforced Pickering emulgel for arbitrary architected nanocomposite with connected nanomaterial matrix[J] Nature Communications, 2021, 12(1): 111.
    [56]
    ZHU C, HAN T Y J, DUOSS E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nature Communications, 2015, 6(1): 6962.
    [57]
    XU M, FUTABA D N, YAMADA T, et al. Carbon nanotubes with temperature-invariant viscoelasticity from –196 to 1 000 ℃[J]. Science, 2010, 330(6009): 1364-1368.
    [58]
    KIM K H, OH Y, ISLAM M F. Graphene coating makes carbon nanotube aerogels superelastic and resistant to fatigue[J]. Nature Nanotechnology, 2012, 7(9): 562-566. doi: 10.1038/nnano.2012.118
    [59]
    ZHANG F, REN D H, HUANG L Q, et al. 3D Interconnected conductive graphite nanoplatelet welded carbon nanotube networks for stretchable conductors[J]. Advanced Functional Materials, 2021, 31(49): 2107082. doi: 10.1002/adfm.202107082
    [60]
    GUO F, JIANG Y Q, XU Z, et al. Highly stretchable carbon aerogels[J]. Nature Communications, 2018, 9(1): 881. doi: 10.1038/s41467-017-02088-w
    [61]
    GAO H L, WANG Z Y, CUI C, et al. A highly compressible and stretchable carbon spring for smart vibration and magnetism sensors[J]. Advanced Materials, 2021, 33(39): 2170308. doi: 10.1002/adma.202170308
    [62]
    LIANG Y R, LIANG X L, ZHANG Z Y, et al. High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits[J]. Nanoscale, 2015, 7(25): 10954-10962. doi: 10.1039/C5NR02292D
    [63]
    BOLLELLA P, FUSCO G, TORTOLINI C, et al. Beyond graphene: electrochemical sensors and biosensors for biomarkers detection[J]. Biosensors and Bioelectronics, 2017, 89(1): 152-166.
    [64]
    ZHUO H, HU Y J, TONG X, et al. A supercompressible, elastic, and bendable carbon aerogel with ultrasensitive detection limits for compression strain, pressure, and bending angle[J]. Advanced Materials, 2018, 30(18): 1706705. doi: 10.1002/adma.201706705
    [65]
    TIAN Y, HAN J K, YANG J K, et al. A highly sensitive graphene aerogel pressure sensor inspired by fluffy spider leg[J]. Advanced Materials Interfaces, 2021, 8(15): 2100511. doi: 10.1002/admi.202100511
    [66]
    PANG K, SONG X, XU Z, et al. Hydroplastic foaming of graphene aerogels and artificially intelligent tactile sensors[J]. Science Advances, 2020, 6(46): eabd4045. doi: 10.1126/sciadv.abd4045
    [67]
    CAO X Y, ZHANG J, CHEN S W, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials, 2020, 30(35): 2003618. doi: 10.1002/adfm.202003618
    [68]
    SAMAD Y A, LI Y Q, ALHASSAN S M, et al. Novel graphene foam composite with adjustable sensitivity for sensor applications[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9195-9202.
    [69]
    LI C W, JIANG D G, LIANG H, et al. Superelastic and arbitrary-shaped graphene aerogels with sacrificial skeleton of melamine foam for varied applications[J]. Advanced Functional Materials, 2018, 28(8): 1704674. doi: 10.1002/adfm.201704674
    [70]
    LIANG J J, ZHAO Z B, TANG Y C, et al. Covalent bonds-integrated graphene foam with superb electromechanical properties as elastic conductor and compressive sensor[J]. Carbon, 2019, 147: 206-213. doi: 10.1016/j.carbon.2019.02.087
    [71]
    QIN Y Y, PENG Q Y, DING Y J, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941. doi: 10.1021/acsnano.5b02781
    [72]
    HUANG J K, ZENG J B, LIANG B Q, et al. Multi-arch-structured all-carbon aerogels with superelasticity and high fatigue resistance as wearable sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(14): 16822-16830.
    [73]
    MA Y X, YU M, LIU J H, et al. Ultralight interconnected graphene-amorphous carbon hierarchical foam with mechanical resiliency for high sensitivity and durable strain sensors[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27127-27134.
    [74]
    MA W J, JIANG Z C, LU T, et al. Lightweight, elastic and superhydrophobic multifunctional nanofibrous aerogel for self-cleaning, oil/water separation and pressure sensing[J]. Chemical Engineering Journal, 2021, 430: 132989.
    [75]
    WANG Z Y, GAO W L, ZHANG Q, et al. 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors[J]. Applied Materials Interfaces, 2018, 11(1): 1344-1352.
    [76]
    MA Y N, YUE Y, ZHANG H, et al. 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor[J]. ACS Nano, 2018, 12(4): 3209-3216. doi: 10.1021/acsnano.7b06909
    [77]
    LIU P F, LI X F, CHANG X Y, MIN P, et al. Highly anisotropic graphene aerogels fabricated by calcium ion-assisted unidirectional freezing for highly sensitive sensors and efficient cleanup of crude oil spills[J]. Carbon, 2021, 178: 301-309. doi: 10.1016/j.carbon.2021.03.014
    [78]
    ZU G Q, KANAMORI K, NAKANISHI K, et al. Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array[J]. Chemistry of Materials, 2019, 31(16): 6276-6285. doi: 10.1021/acs.chemmater.9b02437
    [79]
    PENG X W, WU K Z, HU Y J, et al. A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors[J]. Journal of Materials Chemistry A, 2018, 6(46): 23550-23559. doi: 10.1039/C8TA09322A
    [80]
    WANG M, CHEN Y L, QIN Y L, et al. Compressible, fatigue resistant, and pressure-sensitive carbon aerogels developed with a facile method for sensors and electrodes[J]. ACS Sustainable Chemistry of Engineering, 7(15): 12726-12733.
    [81]
    YU Z L, QIN B, MA Z Y, et al. Superelastic hard carbon nanofiber aerogels[J]. Advanced Materials, 2019, 31(23): 1900651. doi: 10.1002/adma.201900651
    [82]
    WANG L, ZHANG M Y, YANG B, et al. Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5486-5497.
    [83]
    CHEN X Y, LIU H, ZHENG Y J, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42594-42606.
    [84]
    YANG M, ZHAO N F, CUI Y, et al. Biomimetic architectured graphene aerogel with exceptional strength and resilience[J]. ACS Nano, 2017, 11(7): 6817-6824. doi: 10.1021/acsnano.7b01815
    [85]
    ZHANG Y N, MAO T Y, WU H, et al. Carbon nanotubes grown on flax fabric as hierarchical all-carbon flexible electrodes for supercapacitors[J]. Advanced Materials Interfaces, 2017, 4(9): 1601123. doi: 10.1002/admi.201601123
    [86]
    XU X, LI H, ZHANG Q Q, et al. Self-sensing, ultralight, and conductive 3D graphene/iron oxide aerogel elastomer deformable in a magnetic field[J]. ACS Nano, 2015, 9(4): 3969-3977. doi: 10.1021/nn507426u
    [87]
    LI C W, QIU L, ZHANG B Q, et al. Robust vacuum-/air-dried graphene aerogels and fast recoverable shape-memory hybrid foams[J]. Advanced Materials, 2016, 28(7): 1510-1516. doi: 10.1002/adma.201504317
    [88]
    TABASSIAN R, KIM J, NGUYEN V H, et al. Functionally antagonistic hybrid electrode with hollow tubular graphene mesh and nitrogen-doped crumpled graphene for high-performance ionic soft actuators[J]. Advanced Functional Materials, 2018, 28(5): 1705714. doi: 10.1002/adfm.201705714
    [89]
    SHAO L H, BIENER J, JIN H J, et al. Electrically tunable nanoporous carbon hybrid actuators[J]. Advanced Functional Materials, 2012, 22(14): 3029-3034. doi: 10.1002/adfm.201200245
    [90]
    LI W B, LI F Y, LI H Z, SU M, et al. Flexible circuits and soft actuators by printing assembly of graphene[J]. ACS Applied Materials & Interfaces, 2016, 8(19): 12369-12376.
    [91]
    GANONYAN N, HE J, TENKIN A, et al. Ultralight monolithic magnetite aerogel[J]. Applied Materials Today, 2021, 22: 100955. doi: 10.1016/j.apmt.2021.100955
    [92]
    ALIEV A E, OH J, KOZLOV M E, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles[J]. Science, 2009, 323(5921): 1575-1578. doi: 10.1126/science.1168312
    [93]
    QIU L, LIU D Y, WANG Y F, et al. Mechanically robust, electrically conductive and stimuli-responsive binary network hydrogels enabled by superelastic graphene aerogels[J]. Advanced Materials, 2014, 26(20): 3333-3337. doi: 10.1002/adma.201305359
    [94]
    KIM K H, VURAL M, ISLAM M F. Single-walled carbon nanotube aerogel-based elastic conductors[J]. Advanced Materials, 2011, 23(25): 2865-2869. doi: 10.1002/adma.201100310
    [95]
    ZHANG X T, SUI Z Y, XU B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18): 6494-6497. doi: 10.1039/c1jm10239g
    [96]
    XU Z, ZHANG Y, LI P G, et al. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores[J]. ACS Nano, 2012, 6(8): 7103-7113. doi: 10.1021/nn3021772
    [97]
    TANG G, JIANG Z G, LI X, et al. Three dimensional graphene aerogels and their electrically conductive composites[J]. Carbon, 2014, 77: 592-599. doi: 10.1016/j.carbon.2014.05.063
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (670) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return