Volume 43 Issue 9
Sep.  2022
Turn off MathJax
Article Contents
ZHU Shuairun, LI Shaohong, ZHONG Caiyin, WU Lizhou. Numerical Analysis of Time Fractional-Order Unsaturated Flow and Its Application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334
Citation: ZHU Shuairun, LI Shaohong, ZHONG Caiyin, WU Lizhou. Numerical Analysis of Time Fractional-Order Unsaturated Flow and Its Application[J]. Applied Mathematics and Mechanics, 2022, 43(9): 966-975. doi: 10.21656/1000-0887.420334

Numerical Analysis of Time Fractional-Order Unsaturated Flow and Its Application

doi: 10.21656/1000-0887.420334
  • Received Date: 2021-11-04
  • Rev Recd Date: 2022-01-08
  • Available Online: 2022-09-08
  • Publish Date: 2022-09-30
  • Numerical simulation of the unsaturated flow process is of great significance to many fields such as soil slope stability analysis and migration simulation of underground pollutants. Generally, it is widely used due to the universal applicability of the Richards equation, but the seepage process described by the Richards equation does not involve the anomalous diffusion phenomenon in natural environment and experiments. To address this problem, the Caputo derivative was applied to obtain the time fractional-order Richards equation with broader seepage significance. Then the finite difference method was used to get the discretization scheme and the Picard method was chosen to solve it iteratively, and the sensitivity analysis of the fractional parameters and soil-water characteristic curves was carried out. Finally, combined with the experimental data of soil column infiltration, the numerical solutions obtained from the time fractional-order Richards equation under different soil-water characteristic curves were compared. The results show that, the time fractional-order Richards equation of the VGM model has better fitting effects for the measured data and can better describe the seepage process of groundwater in unsaturated soil.

  • loading
  • [1]
    潘鼎, 唐红, 刘军. 地下水源热泵回灌非饱和渗流淤堵分析[J]. 岩石力学与工程学报, 2021, 40(4): 842-850

    PAN Ding, TANG Hong, LIU Jun. Analysis of unsaturated seepage siltation of groundwater source heat pump recharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 842-850.(in Chinese)
    [2]
    朱帅润, 李绍红, 何博, 等. 改进的Picard法在非饱和土渗流中的应用研究[J]. 岩土工程学报, 2022, 44(4): 712-720

    ZHU Shuairun, LI Shaohong, HE Bo, et al. Application of improved Picard method in unsaturated seepage[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 712-720.(in Chinese)
    [3]
    胡小荣, 蔡晓锋, 瞿鹏. 基于坐标平移法的正常固结非饱和土三剪弹塑性本构模型[J]. 应用数学和力学, 2021, 42(8): 813-831

    HU Xiaorong, CAI Xiaofeng, QU Peng. Triple-shear elastoplastic constitutive models for normally consolidated unsaturated soils based on the coordinate translation method[J]. Applied Mathematics and Mechanics, 2021, 42(8): 813-831.(in Chinese)
    [4]
    朱帅润, 吴礼舟. 加速型改进迭代法在非饱和土渗流中的应用研究[J]. 岩土力学, 2022, 43(3): 697-707

    ZHU Shuairun, WU Lizhou. Application research of accelerated modified iteration method in unsaturated flow[J]. Rock and Soil Mechanics, 2022, 43(3): 697-707.(in Chinese)
    [5]
    兰鹏, 李海潮, 叶新宇, 等. PINNs算法及其在岩土工程中的应用研究[J]. 岩土工程学报, 2021, 43(3): 586-592

    LAN Peng, LI Haichao, YE Xinyu, et al. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592.(in Chinese)
    [6]
    RICHARDS L A. Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333. doi: 10.1063/1.1745010
    [7]
    WU L Z, HUANG J S, FAN W, et al. Hydro-mechanical coupling in unsaturated soils covering a non-deformable structure[J]. Computers and Geotechnics, 2020, 117: 103287. doi: 10.1016/j.compgeo.2019.103287
    [8]
    吴礼舟, 张利民, 黄润秋. 成层非饱和土渗流的耦合解析解[J]. 岩土力学, 2011, 32(8): 2391-2396

    WU Lizhou, ZHANG Limin, HUANG Runqiu. Analytic solution to coupled seepage in layered unsaturated soils[J]. Rock and Soil Mechanics, 2011, 32(8): 2391-2396.(in Chinese)
    [9]
    ZHA Y, YANG J, YIN L, et al. A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil[J]. Journal of Hydrology, 2017, 551: 56-69. doi: 10.1016/j.jhydrol.2017.05.053
    [10]
    WU L Z, ZHU S R, PENG J B. Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-induced landslides[J]. Applied Mathematical Modelling, 2020, 80: 408-425. doi: 10.1016/j.apm.2019.11.043
    [11]
    LIU C Y, KU C Y, HUANG C C. Numerical solutions for groundwater glow in unsaturated layered soil with extreme physical property contrasts[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2015, 16(7): 325-335.
    [12]
    汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021, 42(8): 832-840

    WANG Jingying, ZHAI Shuying. An efficient numerical algorithm for fractional Cahn-Hilliard equations[J]. Applied Mathematics and Mechanics, 2021, 42(8): 832-840.(in Chinese)
    [13]
    庞乃虹, 李宏. Sobolev方程的混合连续时空有限元解的误差估计[J]. 应用数学和力学, 2020, 41(8): 834-843

    PANG Naihong, LI Hong. Error estimates of mixed space-time finite element solutions to Sobolev equations[J]. Applied Mathematics and Mechanics, 2020, 41(8): 834-843.(in Chinese)
    [14]
    ZHA Y, YANG J, SHI L, et al. Simulating one-dimensional unsaturated flow in heterogeneous soils with water content-based Richards equation[J]. Vadose Zone Journal, 2013, 12(2): 1-13. doi: 10.2136/vzj2012.0142
    [15]
    吴梦喜. 饱和-非饱和土中渗流Richards方程有限元算法[J]. 水利学报, 2009, 40(10): 1274-1279

    WU Mengxi. Finite element algorithm for Richards’ equation for saturated-unsaturated seepage flow[J]. Journal of Hydraulic Engineering, 2009, 40(10): 1274-1279.(in Chinese)
    [16]
    ZAMBRA C E, DUMBSER M, TORO E F, et al. A novel numerical method of high-order accuracy for flow in unsaturated porous media[J]. International Journal for Numerical Methods in Engineering, 2011, 89(2): 227-240.
    [17]
    LOTT P A, WALKER H F, WOODWARD C S, et al. An accelerated Picard method for nonlinear systems related to variably saturated flow[J]. Advances in Water Resources, 2012, 38: 92-101. doi: 10.1016/j.advwatres.2011.12.013
    [18]
    LIST F, RADU F A. A study on iterative methods for solving Richards’ equation[J]. Computational Geosciences, 2016, 20(2): 341-353. doi: 10.1007/s10596-016-9566-3
    [19]
    李文涛, 马田田, 韦昌富. 基于自适应松弛Picard法的高效非饱和渗流有限元分析[J]. 岩土力学, 2016, 37(1): 237-243

    LI Wentao, MA Tiantian, WEI Changfu. An efficient finite element procedure for unsaturated flow based on adaptive relaxed Picard method[J]. Rock and Soil Mechanics, 2016, 37(1): 237-243.(in Chinese)
    [20]
    孙洪广, 常爱莲, 陈文, 等. 反常扩散: 分数阶导数建模及其在环境流动中的应用[J]. 中国科学: 物理学 力学 天文学, 2015, 45(10): 3-17

    SUN Hongguang, CHANG Ailian, CHEN Wen, et al. Anomalous diffusion: fractional derivative equation models and applications in environmental flows[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2015, 45(10): 3-17.(in Chinese)
    [21]
    郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京: 科学出版社, 2011.

    GUO Bailing, PU Xueke, HUANG Fenghui. Fractional Partial Differential Equations and Their Numerical Solutions[M]. Beijing: Science Press, 2011. (in Chinese)
    [22]
    PACHEPSKY Y, TIMLIN D, RAWLS W. Generalized Richards’ equation to simulate water transport in unsaturated soils[J]. Journal of Hydrology, 2003, 272(1/4): 3-13. doi: 10.1016/S0022-1694(02)00251-2
    [23]
    GERASIMOV D N, KONDRATIEVA V A, SINKEVICH O A. An anomalous non-self-similar infiltration and fractional diffusion equation[J]. Physica D: Nonlinear Phenomena, 2010, 239(16): 1593-1597. doi: 10.1016/j.physd.2010.04.005
    [24]
    GEROLYMATOU E, VARDOULAKIS I, HILFER R. Modelling infiltration by means of a nonlinear fractional diffusion model[J]. Journal of Physics D: Applied Physics, 2006, 39(18): 4104-4110. doi: 10.1088/0022-3727/39/18/022
    [25]
    王睿, 周宏伟, 卓壮. 基于分数阶导数的非饱和渗流问题研究[J]. 矿业科学学报, 2019, 4(1): 17-22

    WANG Rui, ZHOU Hongwei, ZHUO Zhuang. Research on unsaturated seepage problems based on fractional order derivative[J]. Journal of Mining Science and Technology, 2019, 4(1): 17-22.(in Chinese)
    [26]
    王睿, 周宏伟, 卓壮, 等. 非饱和土空间分数阶渗流模型的有限差分方法研究[J]. 岩土工程学报, 2020, 42(9): 1759-1764

    WANG Rui, ZHOU Hongwei, ZHUO Zhuang, et al. Finite difference method for space-fractional seepage process in unsaturated soil[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1759-1764.(in Chinese)
    [27]
    EL ABD A, CZACHOR A, MILCZAREK J. Neutron radiography determination of water diffusivity in fired clay brick[J]. Applied Radiation and Isotopes, 2009, 67(4): 556-559. doi: 10.1016/j.apradiso.2008.11.014
    [28]
    LEHMANN F, ACKERER P. Comparison of iterative methods for improved solutions of the fluid flow equation in partially saturated porous media[J]. Transport in Porous Media, 1998, 31(3): 275-292. doi: 10.1023/A:1006555107450
    [29]
    ZHU S R, WU L Z, PENG J B. An improved Chebyshev semi-iterative method for simulating rainfall infiltration in unsaturated soils and its application to shallow landslides[J]. Journal of Hydrology, 2020, 590: 125157. doi: 10.1016/j.jhydrol.2020.125157
    [30]
    SIMUNEK J, SEJNA M, SAITO H, et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[R]. Riverside, CA: Department of Environmental Sciences, University of California Riverside, 2009.
    [31]
    LIU C S. A two-side equilibration method to reduce the condition number of an ill-posed linear system[J]. Computer Modeling in Engineering & Sciences, 2013, 91(1): 17-42.
    [32]
    GARDNER W R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Soil Science, 1958, 85(4): 228-232. doi: 10.1097/00010694-195804000-00006
    [33]
    VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [34]
    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research, 1976, 12(3): 513-522. doi: 10.1029/WR012i003p00513
    [35]
    FREDLUND D G, XING A. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal, 1994, 31(4): 521-532. doi: 10.1139/t94-061
    [36]
    KU C Y, LIU C Y, SU Y, et al. Modeling of transient flow in unsaturated geomaterials for rainfall-induced landslides using a novel spacetime collocation method[J]. Geofluids, 2018(5): 1-16.
    [37]
    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. John Wiley and Sons Inc, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (737) PDF downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return