Volume 43 Issue 5
May  2022
Turn off MathJax
Article Contents
ZHANG Jie, ZHANG Sai, GAO Weiye, HU Shiwang, WANG Zhenyi. A Fractal Model for Thermal Dispersion Coefficients of Porous Media[J]. Applied Mathematics and Mechanics, 2022, 43(5): 553-560. doi: 10.21656/1000-0887.420314
Citation: ZHANG Jie, ZHANG Sai, GAO Weiye, HU Shiwang, WANG Zhenyi. A Fractal Model for Thermal Dispersion Coefficients of Porous Media[J]. Applied Mathematics and Mechanics, 2022, 43(5): 553-560. doi: 10.21656/1000-0887.420314

A Fractal Model for Thermal Dispersion Coefficients of Porous Media

doi: 10.21656/1000-0887.420314
  • Received Date: 2021-10-18
  • Rev Recd Date: 2021-12-08
  • Available Online: 2022-04-07
  • Publish Date: 2022-05-01
  • The thermal dispersion coefficient is an important parameter to characterize heat and mass transfer in porous media, which is related to the physical properties of fluid and the structure of porous media. The pore-throat structure model for fractal porous media was established, and the local head loss and the velocity dispersion effect were studied for the fluid changing from the turbulent state to the laminar state around the pore-throat structure. The thermal dispersion coefficient formula was derived under the influences of the micropore-throat structure and the velocity dispersion effect. The results show that, the thermal dispersion coefficient is directly proportional to the pore-throat ratio, the number of pore-throat structures and the tortuous fractal dimension, and is inversely proportional to the porosity and the area fractal dimension. Furthermore, in the range of 1~150, the pore-throat ratio has a significant influence on the velocity dispersion effect, and the fluid has a local head loss around the pore-throat structure, which leads to an enhancement of the velocity dispersion effect and an increase of the thermal dispersion coefficient.

  • loading
  • [1]
    SHOKOUHMAND H, BAGHERZADE P, FAZLI M, et al. Thermal dispersion effects on heat transfer of laminar gas flow in a microtube filled with porous medium[J]. International Journal of Thermal Sciences, 2017, 122: 281-291. doi: 10.1016/j.ijthermalsci.2017.09.002
    [2]
    李晓宇, 徐宏阳, 代敏, 等. 热弥散对地埋管换热器全尺度传热的影响[J]. 化工学报, 2021, 72(5): 2547-2559. (LI Xiaoyu, XU Hongyang, DAI Min, et al. Impact of thermal dispersion on full-scale heat transfer of borehole heat exchanges[J]. CIESC Journal, 2021, 72(5): 2547-2559.(in Chinese)
    [3]
    陈仲山. 多孔介质内热质弥散及湍流预混火焰特性的双尺度研究[D]. 博士学位论文. 大连: 大连理工大学, 2015.

    CHEN Zhongshan. Double-scale study on heat and mass dispersion and turbulent premixed flame characteristics in porous media[D]. PhD Thesis. Dalian: Dalian University of Technology, 2015. (in Chinese)
    [4]
    郁伯铭, 徐鹏, 邹明清, 等. 分形多孔介质输运物理[M]. 北京: 科学出版社, 2014.

    YU Boming, XU Peng, ZOU Mingqing, et al. Transport Physics of Fractal Porous Media[M]. Beijing: Science Press, 2014. (in Chinese)
    [5]
    周焕林, 严俊, 余波, 等. 识别含热源瞬态热传导问题的热扩散系数[J]. 应用数学和力学, 2018, 39(2): 160-169. (ZHOU Huanlin, YAN Jun, YU Bo, et al. Identification of thermal diffusion coefficients for transient heat conduction problems with heat sources[J]. Applied Mathematics and Mechanics, 2018, 39(2): 160-169.(in Chinese)
    [6]
    JOUYBARI N F, LUNDSTRÖM T S, HELLSTRÖM J. Investigation of thermal dispersion and intra-pore turbulent heat flux in porous media[J]. International Journal of Heat and Fluid Flow, 2020, 81: 108523. doi: 10.1016/j.ijheatfluidflow.2019.108523
    [7]
    VADASZ P. Heat flux dispersion in natural convection in porous media[J]. International Journal of Heat and Mass Transfer, 2015, 53(17/18): 3394-3404.
    [8]
    戚涛, 胡勇, 李骞, 等. 多孔介质速度场和流量场分布[J]. 天然气地球科学, 2020, 208(3): 28-35. (QI Tao, HU Yong, LI Qian, et al. Velocity and flow field in porous media[J]. Natural Gas Geoscience, 2020, 208(3): 28-35.(in Chinese)
    [9]
    MOYNE C, DIDIERJEAN S, SOUTO H, et al. Thermal dispersion in porous media: one-equation model[J]. International Journal of Heat and Mass Transfer, 2000, 43(20): 3853-3867.
    [10]
    HUNT M L, TIEN C L. Effects of thermal dispersion on forced convection in fibrous media[J]. International Journal of Heat and Mass Transfer, 1988, 31(2): 301-309.
    [11]
    YU B M, CHENG P. A fractal permeability model for bi-dispersed porous media[J]. International Journal of Heat and Mass Transfer, 2002, 45(14): 2983-2993.
    [12]
    张赛, 陈君若, 刘显茜. 气体有效扩散系数的分形模型[J]. 化学工程, 2013, 41(5): 39-43. (ZHANG Sai, CHEN Junruo, LIU Xianxi. Fractal model of gas effective diffusivity[J]. Chemical Engineering, 2013, 41(5): 39-43.(in Chinese) doi: 10.3969/j.issn.1005-9954.2013.05.009
    [13]
    WU J S, YU B M. A fractal resistance model for flow through porous media[J]. International Journal of Heat and Mass Transfer, 2007, 50(19/20): 3925-3932.
    [14]
    HSU C T, CHENG P. Thermal dispersion in a porous medium[J]. International Journal of Heat and Mass Transfer, 1990, 33(8): 1587-1597.
    [15]
    METZGER T, DIDIERJEAN S, MAILLET D. Optimal experimental estimation of thermal dispersion coefficients in porous media[J]. International Journal of Heat and Mass Transfer, 2004, 47(14/16): 3341-3353. doi: 10.1016/j.ijheatmasstransfer.2004.02.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (774) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return