Volume 43 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
ZENG Weihong, FU Zhuojia, TANG Zhuochao. A Novel Localized Meshless Collocation Method for Numerical Simulation of Flume Dynamic Characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400. doi: 10.21656/1000-0887.420246
Citation: ZENG Weihong, FU Zhuojia, TANG Zhuochao. A Novel Localized Meshless Collocation Method for Numerical Simulation of Flume Dynamic Characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400. doi: 10.21656/1000-0887.420246

A Novel Localized Meshless Collocation Method for Numerical Simulation of Flume Dynamic Characteristics

doi: 10.21656/1000-0887.420246
  • Received Date: 2021-08-20
  • Rev Recd Date: 2021-10-05
  • Available Online: 2022-03-21
  • Publish Date: 2022-04-01
  • The localized boundary knot method (LBKM) is a novel meshless collocation technology based on the non-singular semi-analytical basis functions and the moving least squares theory, and expresses the unknown variable at each knot as a linear combination of physical quantities at nodes inside its corresponding local subdomain. The LBKM was used to study the numerical wave flume. Firstly, the appropriate shape parameters for the non-singular semi-analytical basis functions of the Laplace operator were derived by the benchmark example. Further, the numerical results obtained with fewer nodes and appropriate parameters were in good agreement with the referential results. Finally, the effects of the underwater breakwater on wave propagation were investigated to protect coastal buildings. The results show that, when the wave interacts with the trapezoidal breakwater, the wave crest will become steeper, and the wave trough will become relatively flatter, which provides a numerical reference for the research and design of the coastal breakwater.

  • loading
  • [1]
    GRILLI S T, SKOURUP J, SVENDSEN I A. An efficient boundary element method for nonlinear water waves[J]. Engineering Analysis With Boundary Elements, 1989, 6(2): 97-107. doi: 10.1016/0955-7997(89)90005-2
    [2]
    王本龙, 刘桦. 一种适用于非均匀地形的高阶Boussinesq水波模型[J]. 应用数学和力学, 2005, 26(6): 714-722. (WANG Benlong, LIU Hua. Higher order Boussinesq-type equations for water waves on uneven bottom[J]. Applied Mathematics and Mechanics, 2005, 26(6): 714-722.(in Chinese) doi: 10.3321/j.issn:1000-0887.2005.06.013
    [3]
    王大国, 邹志利, 唐春安. 三维完全非线性波浪水槽的数值模拟[J]. 海洋学报, 2006, 28(4): 138-144. (WANG Daguo, ZOU Zhili, TANG Chunan. Fully nonlinear three-dimensional numerical wave tank simulation[J]. Acta Oceanologica Sinica, 2006, 28(4): 138-144.(in Chinese)
    [4]
    卫志军, 申利敏, 关晖, 等. 拓扑优化技术在抑制流体晃荡中的数值模拟研究[J]. 应用数学和力学, 2021, 42(1): 49-57. (WEI Zhijun, SHEN Limin, GUAN Hui, et al. Numerical simulation of topology optimization technique for tank sloshing suppression[J]. Applied Mathematics and Mechanics, 2021, 42(1): 49-57.(in Chinese)
    [5]
    KOO W C, KIM M H. Freely floating-body simulation by a 2D fully nonlinear numerical wave tank[J]. Ocean Engineering, 2004, 31(16): 2011-2046. doi: 10.1016/j.oceaneng.2004.05.003
    [6]
    CHRISTOU M, SWAN C, GUDMESTAD O T. The interaction of surface water waves with submerged breakwaters[J]. Coastal Engineering, 2008, 55(12): 945-958. doi: 10.1016/j.coastaleng.2008.02.014
    [7]
    黄志涛, 杨瑜, 邵家儒, 等. 罐车防晃结构SPH模拟研究[J]. 应用数学和力学, 2020, 41(7): 760-770. (HUANG Zhitao, YANG Yu, SHAO Jiaru, et al. Numerical simulation of sloshing-mitigating structures in tank trucks with the SPH method[J]. Applied Mathematics and Mechanics, 2020, 41(7): 760-770.(in Chinese)
    [8]
    SENTURK U. Modeling nonlinear waves in a numerical wave tank with localized meshless RBF method[J]. Computers and Fluids, 2011, 44(1): 221-228. doi: 10.1016/j.compfluid.2011.01.004
    [9]
    李珺璞, 傅卓佳, 陈文. 奇异边界法分析含水下障碍物水域中的水波传播问题[J]. 应用数学和力学, 2015, 36(10): 1035-1044. (LI Junpu, FU Zhuojia, CHEN Wen. The singular boundary method for obliquely incident water wave passing a submerged breakwater[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1035-1044.(in Chinese) doi: 10.3879/j.issn.1000-0887.2015.10.003
    [10]
    ZHANG T, REN Y F, FAN C M, et al. Simulation of two-dimensional sloshing phenomenon by generalized finite difference method[J]. Engineering Analysis With Boundary Elements, 2016, 63: 82-91. doi: 10.1016/j.enganabound.2015.11.008
    [11]
    ZHANG T, REN Y F, YANG Z Q, et al. Application of generalized finite difference method to propagation of nonlinear water waves in numerical wave flume[J]. Ocean Engineering, 2016, 123: 278-290. doi: 10.1016/j.oceaneng.2016.07.038
    [12]
    HUANG J, CHU C N, FAN C M, et al. On the propagation of nonlinear water waves in a three-dimensional numerical wave flume using the generalized finite difference method[J]. Engineering Analysis With Boundary Elements, 2020, 119: 225-234. doi: 10.1016/j.enganabound.2020.07.020
    [13]
    ZHANG Y O, XIONG A K. A particle method based on a generalized finite difference scheme to solve weakly compressible viscous flow problems[J]. Symmetry, 2019, 11(9): 1086. doi: 10.3390/sym11091086
    [14]
    CHEN W, TANAKA M. A meshless, integration-free, and boundary-only RBF technique[J]. Computers & Mathematics With Applications, 2002, 43(3/5): 379-391.
    [15]
    FU Z J, XI Q, CHEN W, et al. A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations[J]. Computers & Mathematics With Applications, 2018, 76(4): 760-773.
    [16]
    WANG F J, GU Y, QU W Z, et al. Localized boundary knot method and its application to large-scale acoustic problems[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 361: 112729. doi: 10.1016/j.cma.2019.112729
    [17]
    XIONG J G, WEN J C, LIU Y C. Localized boundary knot method for solving two-dimensional Laplace and bi-harmonic equations[J]. Mathematics, 2020, 8(8): 1218. doi: 10.3390/math8081218
    [18]
    RICCHIUTO M, ABGRALL R. Explicit Runge-Kutta residual distribution schemes for time dependent problems: second order case[J]. Journal of Computational Physics, 2010, 229(16): 5653-5691. doi: 10.1016/j.jcp.2010.04.002
    [19]
    OHYAMA T, BEJI S, NADAOKA K, et al. Experimental verification of numerical model for nonlinear wave evolutions[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1994, 120(6): 637-644. doi: 10.1061/(ASCE)0733-950X(1994)120:6(637)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (691) PDF downloads(71) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return