Volume 43 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
CHEN Hongling, LI Xiaolin. Analysis of the Finite Point Method for Fractional Cable Equations[J]. Applied Mathematics and Mechanics, 2022, 43(6): 700-706. doi: 10.21656/1000-0887.420183
Citation: CHEN Hongling, LI Xiaolin. Analysis of the Finite Point Method for Fractional Cable Equations[J]. Applied Mathematics and Mechanics, 2022, 43(6): 700-706. doi: 10.21656/1000-0887.420183

Analysis of the Finite Point Method for Fractional Cable Equations

doi: 10.21656/1000-0887.420183
  • Received Date: 2021-07-02
  • Rev Recd Date: 2021-09-19
  • Available Online: 2022-06-02
  • Publish Date: 2022-06-30
  • With the central difference scheme to discretize the Riemann-Liouville time fractional derivatives and by means of the finite point method to establish discrete algebraic equation systems, a meshless finite point method was proposed for the numerical analysis of the fractional Cable equation. The error estimation of the method was derived and discussed in detail. Numerical examples verify the efficiency and convergence of the method and confirm the theoretical results.

  • loading
  • [1]
    HU X L, ZHANG L M. Implicit compact difference schemes for the fractional Cable equation[J]. Applied Mathematical Modelling, 2012, 36(9): 4027-4043. doi: 10.1016/j.apm.2011.11.027
    [2]
    LIAO H L, SUN Z Z. Maximum norm error estimates of efficient difference schemes for second-order wave equations[J]. Journal of Computational and Applied Mathematics, 2010, 235(8): 2217-2233.
    [3]
    KHAN M A, ALI N H M, HAMID N N A. The design of new high-order group iterative method in the solution of two-dimensional fractional Cable equation[J]. Alexandria Engineering Journal, 2021, 60(4): 3553-3563. doi: 10.1016/j.aej.2021.01.008
    [4]
    QUINTANA-MURILLO J, YUSTE S B. An explicit numerical method for the fractional Cable equation[J]. International Journal of Differential Equations, 2011, 72(2): 447-466.
    [5]
    ZHUANG P, LIU F, ANH V, et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process[J]. IMA Journal of Applied Mathematics, 2005, 74: 645-667.
    [6]
    AL-MASKARI M, KARAA S. The lumped mass FEM for a time-fractional Cable equation[J]. Applied Numerical Mathematics, 2018, 132: 73-90. doi: 10.1016/j.apnum.2018.05.012
    [7]
    ZHENG R, LIU F, JIANG X, et al. Finite difference/spectral methods for the two-dimensional distributed-order time-fractional Cable equation[J]. Computers & Mathematics With Applications, 2020, 80(6): 1523-1537.
    [8]
    DEHGHAN M, ABBASZADEH M, MOHEBBI A. Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method[J]. Journal of Computational and Applied Mathematics, 2015, 280: 14-36. doi: 10.1016/j.cam.2014.11.020
    [9]
    DEHGHAN M, ABBASZADEH M. Analysis of the element free Galerkin (EFG) method for solving fractional Cable equation with Dirichlet boundary condition[J]. Applied Numerical Mathematics, 2016, 109: 208-234. doi: 10.1016/j.apnum.2016.07.002
    [10]
    CHENG Y M. Meshless Methods[M]. Beijing: Science Press, 2015.
    [11]
    王红, 李小林. 二维瞬态热传导问题的无单元Galerkin法分析[J]. 应用数学和力学, 2021, 42(5): 460-469. (WANG Hong, LI Xiaolin. Analysis of 2D transient heat conduction problems with the element-free Galerkin method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 460-469.(in Chinese)

    WANG Hong, LI Xiaolin. Analysis of 2D transient heat conduction problems with the element-free Galerkin method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 460-469. (in Chinese))
    [12]
    李煜冬, 王发杰, 陈文. 瞬态热传导的奇异边界法及其MATLAB实现[J]. 应用数学和力学, 2019, 40(3): 259-268. (LI Yudong, WANG Fajie, CHEN Wen. MATLAB implementation of a singular boundary method for transient heat conduction[J]. Applied Mathematics and Mechanics, 2019, 40(3): 259-268.(in Chinese)

    LI Yudong, WANG Fajie, CHEN Wen. MATLAB implementation of a singular boundary method for transient heat conduction[J]. Applied Mathematics and Mechanics, 2019, 40(3): 259-268. (in Chinese))
    [13]
    OÑATE E, IDELSOHN S, ZIENKIEWICZ O C, et al. A finite point method in computational mechanics: applications to convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering, 1996, 39(22): 3839-3866. doi: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
    [14]
    ORTEGA E, FLORES R, OÑATE E, et al. A-posteriori error estimation for the finite point method with applications to compressible flow[J]. Computational Mechanics, 2017, 60: 219-233. doi: 10.1007/s00466-017-1402-7
    [15]
    OÑATE E, PERAZZO F, MIQUEL J. A finite point method for elasticity problems[J]. Computers & Structures, 2001, 79(22/25): 2151-2163.
    [16]
    LI X L, DONG H Y. Error analysis of the meshless finite point method[J]. Applied Mathematics and Computation, 2020, 382: 125326. doi: 10.1016/j.amc.2020.125326
    [17]
    CHEN C M, LIU F, TURNER I, et al. A Fourier method for the fractional diffusion equation describing sub-diffusion[J]. Journal of Computational Physics, 2007, 227(2): 886-897. doi: 10.1016/j.jcp.2007.05.012
    [18]
    LI X L. Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces[J]. Applied Numerical Mathematics, 2016, 99: 77-97. doi: 10.1016/j.apnum.2015.07.006
    [19]
    BRENNER S C, SCOTT L R. The Mathematical Theory of Finite Element Methods[M]. New York: Springer, 1994.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (556) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return