Volume 42 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
LI Guoqing, LUO Shuai, SU Rui, WANG Zeming, WANG Cheng. Research on Damage Diagnosis Based on Flexibility Matrix Decomposition[J]. Applied Mathematics and Mechanics, 2021, 42(3): 292-298. doi: 10.21656/1000-0887.410257
Citation: LI Guoqing, LUO Shuai, SU Rui, WANG Zeming, WANG Cheng. Research on Damage Diagnosis Based on Flexibility Matrix Decomposition[J]. Applied Mathematics and Mechanics, 2021, 42(3): 292-298. doi: 10.21656/1000-0887.410257

Research on Damage Diagnosis Based on Flexibility Matrix Decomposition

doi: 10.21656/1000-0887.410257
  • Received Date: 2020-09-01
  • Rev Recd Date: 2021-01-07
  • Publish Date: 2021-03-01
  • To solve the influence of incomplete measured DOFs on structural damage detection under ambient excitation, based on model reduction a proportional flexibility matrix (PFM) decomposition method was proposed. By means of the additional mass method, the normalized factor of mode shapes under ambient excitation was solved. According to the relation between the normalized factor and the PFM factor, the new PFM was built. Then, with the QR matrix decomposition method, the new PFM was decomposed and the resulting triangular matrix (R matrix) was considered as the research object, which was processed with the corresponding mathematical algorithm to obtain the final damage position index. The results show that, the proposed damage position index has high accuracy and certain robustness for both a single damage and multiple damages under ambient excitation. The damage position index derived from the matrix decomposition method applies to structural damage diagnosis under environmental excitation, making a new research idea for damage diagnosis of incomplete-DOF structures.
  • loading
  • [1]
    杨秋伟, 周卫东, 梁超锋. 基于秩分析的结构损伤识别研究[J]. 振动与冲击, 2014,33(15): 126-130.(YANG Qiuwei, ZHOU Weidong, LIANG Chaofeng. Structural damage detection based on rank analysis of its system matrix[J]. Journal of Vibration and Shock,2014,33(15): 126-130.(in Chinese))
    [2]
    付春雨, 李乔, 单德山. 基于位移连续的静力损伤识别[J]. 桥梁建设, 2010(2):18-20.(FU Chunyu, LI Qiao, SHAN Deshan, Static damage identification based on displacement continuity[J]. Bridge Construction,2010(2): 18-20.(in Chinese))
    [3]
    何绪飞, 艾剑良, 宋智桃. 多元数据融合在无人机结构-健康监测中的应用[J]. 应用数学和力学, 2018,39(4): 395-402.(HE Xufei, AI Jianliang, SONG Zhitao. Multi-source data fusion for health monitoring of unmanned aerial vehicle structures[J]. Applied Mathematics and Mechanics,2018,39(4): 395-402.(in Chinese))
    [4]
    DING B D, FENG D S, L H L, et al. Damage detection in grid structures using limited modal test data[J]. Mathematical Problems in Engineering,2017,2017: 1089645.
    [5]
    NOBAHARI M, GHASEMI M R, SHABAKHTY N. A fast and robust method for damage detection of truss structures[J]. Applied Mathematical Modelling,2019,68: 368-382.
    [6]
    SUNG S H, KOO K Y, JUNG H J. Modal flexibility-based damage detection of cantilever beam-type structures using baseline modification[J]. Journal of Sound and Vibration,2014,333(18): 4123-4138.
    [7]
    KATEBI L, TEHRANIZADEH M, MOHAMMADGHOLIBEYKI N. A generalized flexibility matrix-based model updating method for damage detection of plane truss and frame structures[J]. Journal of Civil Structural Health Monitoring,2018,8(2): 301-314.
    [8]
    段忠东, 闫桂荣, 欧进萍, 等. 结构比例柔度矩阵[J]. 哈尔滨工业大学学报, 2006,38(8): 1236-1238, 1242.(DUAN Zhongdong, YAN Guirong, OU Jinping, et a1. Proportional flexibility matrix of structures[J]. Journal of Harbin Institute of Technology,2006,38(8): 1236-1238, 1242.(in Chinese))
    [9]
    DUAN Z D, YAN G R, OU J P, et a1. Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs[J]. Structural Control and Health Monitoring,2007,14(2):186-196.
    [10]
    PARK J, WI S M, LEE J S. Computationally efficient adaptive beamformer for ultrasound imaging based on QR decomposition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2016,63(2): 256-265.
    [11]
    周奎, 徐晨光, 严烨, 等. 基于损伤柔度曲率矩阵的人行天桥损伤识别研究[J]. 上海理工大学学报, 2019,41(6): 577-583.(ZHOU Kui, XU Chenguang, YAN Ye, et al. Damage identification of pedestrian bridge based on damage flexibility curvature matrix[J]. Journal of University of Shanghai for Science and Technology,2019,41(6): 577-583.(in Chinese))
    [12]
    LPEZ-AENLLE M, BRINCKER R, PELAYO F, et a. On exact and approximated formulations for scaling-mode shapes in operational modal analysis by mass and stiffness change[J]. Journal of Sound and Vibration,2012,331(3): 622-637.
    [13]
    杨秋伟, 刘济科. 基于Neumann级数展开的模型缩聚方法[J]. 振动与冲击, 2008,27(8): 144-145, 164.(YANG Qiuwei, LIU Jike. Model reduction based on Neumann series expansion[J]. Journal of Vibration and Shock,2008,27(8): 144-145, 164.(in Chinese))
    [14]
    刘春城, 侯尚雨, 侯立群. 基于多尺度模型的输电塔裂纹损伤识别及抗噪性能分析[J]. 水电能源科学, 2016,34(2): 177-181, 216.(LIU Chuncheng, HOU Shangyu, HOU Liqun. Transmission tower crack damage identification and analysis of anti-noise performance based on multi-scale model[J]. Water Resources and Power,2016,34(2): 177-181, 216.(in Chinese))
    [15]
    LOPEZ-AENLLE M, FERNANDEZ R, BRINCKER R, et al. Scaling-factor estimation using an optimized mass-change strategy[J]. Mechanical Systems & Signal Processing,2010,24(5): 1260-1273.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1289) PDF downloads(525) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return