Volume 42 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
CHEN Xuefei, LIU Huizhao. Adaptive Exponential Synchronization of Non-AutonomousChaotic Systems With Uncertain Parameters[J]. Applied Mathematics and Mechanics, 2021, 42(3): 316-322. doi: 10.21656/1000-0887.410072
Citation: CHEN Xuefei, LIU Huizhao. Adaptive Exponential Synchronization of Non-AutonomousChaotic Systems With Uncertain Parameters[J]. Applied Mathematics and Mechanics, 2021, 42(3): 316-322. doi: 10.21656/1000-0887.410072

Adaptive Exponential Synchronization of Non-AutonomousChaotic Systems With Uncertain Parameters

doi: 10.21656/1000-0887.410072
Funds:  The National Natural Science Foundation of China(11371110)
  • Received Date: 2020-03-04
  • Rev Recd Date: 2021-01-09
  • Publish Date: 2021-03-01
  • The exponential synchronization of non-autonomous chaotic systems with uncertain parameters was studied. The adaptive controller was designed. Based on the Lyapunov stability theory, the exponential stability of the error system was proved. Furthermore, the synchronization time was controlled through adjustment of the control parameters. Numerical simulations of 2 non-autonomous chaotic systems with uncertain parameters were presented to illustrate the ability and effectiveness of the proposed method.
  • loading
  • [1]
    PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters,1990,〖STHZ〗 64(8): 821-824.
    [2]
    任涛, 井元伟, 姜囡. 混沌同步控制方法及在保密通信中的应用[M]. 北京: 机械工业出版社, 2015.(REN Tao, JING Yuanwei, JIANG Nan. Chaos Synchronization Control Methods and Applications on Secure Communication [M]. Beijing: China Machine Press, 2015.(in Chinese))
    [3]
    HE X, LI C, HUANG J, et al. Generalized synchronization of arbitrary-dimensional chaotic systems[J]. Optik,2015,〖STHZ〗 126(4): 454-459.
    [4]
    〖JP2〗SHAHVERDIEV E M, SIVAPRAKASAM S, SHORE K A. Lag synchronization in time-delayed systems[J]. Physics Letters A,2012,〖STHZ〗 292(6): 320-324.
    [5]
    李天择, 郭明, 陈向勇, 等. 基于多切换传输的复变量混沌系统的有限时组合同步控制[J]. 应用数学和力学, 2019,40(11): 1299-1308.(LI Tianze, GUO Ming, CHEN Xiangyong, et al. Finite-time combination synchronization control of complex-variable chaotic systems with multi-switching transmission[J]. Applied Mathematics and Mechanics,2019,40(11): 1299-1308.(in Chinese))
    [6]
    ZHANG H G, HUANG W, WANG Z L, et al. Adaptive synchronization between two different chaotic systems with unknown parameters[J]. Physics Letters A,2006,350(5/6): 363-366.
    [7]
    KHORDAD R, DEHGHANI M A, DEHGHANI A. Adaptive synchronization of two chaotic Chen systems with unknown parameters[J]. International Journal of Modern Physics C,2014,25(2): 1350085.
    [8]
    AL-SAWALHA M M, NOORANI M S M. Anti-synchronization of chaotic systems with uncertain parameters via adaptive control[J]. Physics Letters A,2009,373(32): 2852-2857.
    [9]
    李钟慎, 傅桂元, 杨凯. 不确定性超混沌系统的自适应鲁棒反同步[J]. 华侨大学学报(自然科学版), 2012,33(2): 129-133.(LI Zhongshen, FU Guiyuan, YANG Kai. Self-adaptive robust anti-synchronization of hyperchaotic systems with uncertainties[J]. Journal of Huaqiao University(Natural Science),2012,〖STHZ〗 33(2): 129-133.(in Chinese))
    [10]
    AL-SAWALHA M M, SHOAIB M. Adaptive modified synchronization of hyperchaotic systems with fully unknown parameters[J]. International Journal of Dynamics & Control,2016,4(1): 23-30.
    [11]
    MAHMOUD E E, AL-HARTHI B H. A phenomenal form of complex synchronization and chaotic masking communication between two identical chaotic complex nonlinear structures with unknown parameters[J]. Results in Physics,2019,14: 102452.
    [12]
    HE W L, GAO X Y, ZHONG W M, et al. Secure impulsive synchronization control of multi-agent systems under deception attacks[J]. Information Sciences,2018,459: 354-368.
    [13]
    陆安山, 周小珠. 一个新三维混沌系统及其同步[J]. 河南师范大学学报(自然科学版), 2008,36(1): 66-68.(LU Anshan, ZHOU Xiaozhu. A new chaotic system and its synchronization[J]. Journal of Henan Normal University (Natural Science),2008,36(1): 66-68.(in Chinese))
    [14]
    RAFIKOV M, BALTHAZAR J M. On control and synchronization in chaotic and hyperchaotic systems via linear feedback control[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13(7): 1246-1255.
    [15]
    SALEH M. Chaos synchronization of uncertain chaotic systems using composite nonlinear feedback based integral sliding mode control[J]. ISA Transactions,2018,77: 100-111.
    [16]
    何桂添, 罗懋康. 分数阶Duffing混沌系统的动力性态及其由单一主动控制的混沌同步[J]. 应用数学和力学, 2012,33(5): 539-552.(HE Guitian, LUO Maokang. Dynamic behavior of fractional order Duffing chaotic system and its synchronization via singly active control[J]. Applied Mathematics and Mechanics,2012,33(5): 539-552.(in Chinese))
    [17]
    耿彦峰, 王立志, 刘芳. 一类分数阶超混沌系统修正函数投影同步的滑模控制[J]. 数学的实践与认识, 2019,〖STHZ〗 49(13): 252-258.(GENG Yanfeng, WANG Lizhi, LIU Fang. Modified function projective synchronization by sliding mode control for a class of fractional-order hyper chaotic systems[J]. Mathematics in Practice and Theory,2019,49(13): 252-258.(in Chinese))
    [18]
    KHALIL H K. Nonlinear Systems [M]. Prentice Hall, 2002.
    [19]
    YAN Z, YU P. Globally exponential hyperchaos (lag) synchronization in a family of modified hyperchaotic Rssler systems[J]. International Journal of Bifurcation and Chaos,2007,17(5): 1759-1774.
    [20]
    YANG C C. One input control of exponential synchronization for a four-dimensional chaotic system[J]. Applied Mathematics and Computation,2013,219(10): 5152-5161.
    [21]
    MEI J, JIANG M, WANG B, et al. Exponential p -synchronization of non-autonomous Cohen-Grossberg neural networks with reaction-diffusion terms via periodically intermittent control[J]. Neural Processing Letters,2014,40(2): 103-126.
    [22]
    NADERI B, KHEIRI H. Exponential synchronization of chaotic system and application in secure communication[J]. Optik,2016,127(5): 2407-2412.
    [23]
    WU X, CAI J, WANG M. Master-slave chaos synchronization criteria for the horizontal platform systems via linear state error feedback control[J]. Journal of Sound and Vibration,2006,295(1/2): 378-387.
    [24]
    CAI J, MA M. Synchronization between two non-autonomous chaotic systems via intermittent control of sinusoidal state error feedback[J]. Optik,2016,130: 455-463.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1394) PDF downloads(280) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return