FAN Zhengjie, LIU Zhanfang. Numerical Analysis on Debonding of Crystal-Binder Interface in TATB-Based Polymer-Bonded Explosive Caused by Heating and Cooling Processes[J]. Applied Mathematics and Mechanics, 2020, 41(9): 956-973. doi: 10.21656/1000-0887.410062
Citation: FAN Zhengjie, LIU Zhanfang. Numerical Analysis on Debonding of Crystal-Binder Interface in TATB-Based Polymer-Bonded Explosive Caused by Heating and Cooling Processes[J]. Applied Mathematics and Mechanics, 2020, 41(9): 956-973. doi: 10.21656/1000-0887.410062

Numerical Analysis on Debonding of Crystal-Binder Interface in TATB-Based Polymer-Bonded Explosive Caused by Heating and Cooling Processes

doi: 10.21656/1000-0887.410062
Funds:  The Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(U1830115)
  • Received Date: 2019-12-11
  • Rev Recd Date: 2020-01-11
  • Publish Date: 2020-09-01
  • Polymer-bonded explosive (PBX) is a kind of heterogeneous material composed of energetic crystals and binder as a microstructure. The mechanical properties of crystals, binder layers and the crystal-binder interface under thermomechanical environment are the main factors on PBX damages. Based on the Voronoi theory and the Monte Carlo gradation thought, a 2D geometric model for PBX was established with 5 different crystal volume fractions. With the influence of temperature change on the thermodynamic properties of the crystals and binder, a bilinear cohesive contact relationship model was introduced to describe the mechanical properties of the crystal-binder interface, and the damage mechanism of PBX interface during the heating and cooling processes was analyzed numerically. The results show that, the interface tangential stress increases with the temperature, which leads to debonding of the interface. The debonding of the crystal-binder interface mainly depends on the interface normal stress at a decreased temperature. Compared with the heating process, the cooling process makes interface debonding easier to occur, in agreement with experimental observations. With the increase of the crystal volume fraction, the residual stiffness of interface after the cooling process goes higher, which means that the increase of the PBX crystal volume fraction is helpful to control interfacial debonding. With the same crystal volume fraction, the more uniform the crystal sizes are, the smaller the interfacial damage degree will be.
  • loading
  • [1]
    WU Y, HUANG F. A micromechanical model for predicting combined damage of particles and interface debonding in PBX explosives[J]. Mechanics of Materials,2009,41(1): 27-47.
    [2]
    WANG G, WANG Y, WEN Q. Thermal-mechanical analysis for confined HMX-based polymer-bonded explosives[J]. Journal of Thermal Stresses,2019,42(8): 1011-1034.
    [3]
    HU W, WU Y, HUANG F, et al. Numerical simulation analyses of β←→δ phase transition for a finite-sized HMX single crystal subjected to thermal loading[J]. RSC Advances,2018,8(44): 24873-24882.
    [4]
    KLEIN R. Voronoi Diagrams and Delaunay Triangulations [M]. New York: Springer, 1975.
    [5]
    VORONOI G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques, deuxième mémoire: recherches sur les parallélloèdres primitifs[J]. Journal für die Reine und Angewandte Mathematik (Crelles Journal),1907,134: 97-178.
    [6]
    BARUA A, KIM S, HORIE Y, et al. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold[J]. Journal of Applied Physics,2013,113(6): 64906.
    [7]
    AMBOS A, WILLOT F, JEULIN D, et al. Numerical modeling of the thermal expansion of an energetic material[J]. International Journal of Solids and Structures,2015,60/61(4): 125-139.
    [8]
    AMBOS A, TRUMEL H, WILLOT F, et al. A fast Fourier transform micromechanical upscaling method for the study of the thermal expansion of a TATB-based pressed explosive[C]//The 15th International Detonation Symposium . San Francisco, USA, 2014.
    [9]
    MCGRANE S D, ASLAM T D, PIERCE T H, et al. Temperature of shocked plastic bonded explosive PBX 9502 measured with spontaneous Stokes/anti-Stokes Raman[J]. Journal of Applied Physics,2018,123(4): 045902.
    [10]
    PI Z, LANG C, WU J. Temperature-dependent shock initiation of CL-20 based high explosives[J]. Central European Journal of Energetic Materials,2017,14(2): 361-374.
    [11]
    林聪妹, 刘佳辉, 曾贵玉, 等. 苯乙烯共聚物改性TATB基PBX的抗热冲击性能[J]. 含能材料, 2016,24(2): 149-154.(LIN Congmei, LIU Jiahui, ZENG Guiyu, et al. Thermal shock resistance of styrene copolymer modified TATB-based polymer bonded explosive[J]. Chinese Journal of Energetic Materials,2016,24(2): 149-154.(in Chinese))
    [12]
    韦兴文, 吴束力, 唐兴. HMX基PBX炸药热损伤的数值计算与实验研究[J]. 火炸药学报, 2014,37(4): 9-13.(WEI Xingwen, WU Shuli, TANG Xing. Numerical calculation and experimental study on thermal damage of HMX based polymer bonded explosive[J]. Chinese Journal of Explosives & Propellants,2014,37(4): 9-13.(in Chinese))
    [13]
    WILLEY T M, LAUDERBACH L, GAGLIARDI F, et al. Comprehensive characterization of voids and microstructure in TATB-based explosives from 10 nm to 1 cm: 〖JP2〗effects of temperature cycling and compressive creep[C]// The 14th International Detonation Symposium . Coeur d’Alene, USA, 2010.
    [14]
    张伟斌, 田勇, 温茂萍, 等. JOB-9003炸药热冲击损伤的超声波检测[J]. 含能材料, 2004,12(2): 85-88.(ZHANG Weibin, TIAN Yong, WEN Maoping, et al. Experimental study on the thermal shock damage of explosive by ultrasonic testing[J]. Chinese Journal of Energetic Materials,2004,12(2): 85-88.(in Chinese))
    [15]
    柏巍, 彭刚. 蒙特卡洛法生成混凝土随机骨料模型的ANSYS实现[J]. 石河子大学学报(自然科学版), 2007,25(4): 504-507.(BAI Wei, PENG Gang. ANSYS implementation of Monte Carlo method for generating random concrete aggregate model[J]. Journal of Shihezi University (Natural Science),2007,25(4): 504-507.(in Chinese))
    [16]
    BUECHLER M A, MILLER N A, LUSCHER D J, et al. Modeling the effects of texture on thermal expansion in pressed PBX 9502 components[C]//ASME 2016 International Mechanical Engineering Congress and Exposition . Phoenix, USA, 2016.
    [17]
    THOMPSON D G, BROWN G W, OLINGER B, et al. The effects of TATB ratchet growth on PBX 9502[J]. Propellants Explosives Pyrotechnics,2010,35(6): 507-513.
    [18]
    XU X, XIAO J, HUI H, et al. Molecular dynamic simulations on the structures and properties of ε-CL-20(0 0 1)/F2314PBX[J]. Journal of Hazardous Materials,2010,175(1): 423-428.
    [19]
    温茂萍, 唐维, 董平, 等. 粘结剂含量对热压TATB基PBX残余应力的影响[J]. 含能材料, 2017,25(8): 661-666.(WEN Maoping, TANG Wei, DONG Ping, et al. Effect of binder content on residual stress of thermally compacted TATB based PBX[J]. Chinese Journal of Energetic Materials,2017,25(8): 661-666.(in Chinese))
    [20]
    SUN J, KANG B, ZHANG H, et al. Investigation on irreversible expansion of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene cylinder[J]. Central European Journal of Energetic Materials,2011,8(1): 69-79.
    [21]
    唐维, 李明, 张丘, 等. PBX部件机械加工过程中的夹持变形预测[J]. 含能材料, 2008,16(6): 703-707.(TANG Wei, LI Ming, ZHANG Qiu, et al. Prediction for clamping deformation of PBX parts on machining process[J]. Chinese Journal of Energetic Materials,2008,〖STHZ〗 16(6): 703-707.(in Chinese))
    [22]
    Dassault Systems. ABAQUS 6.14 documentation[DB/CD]. Providence, Rhode Island, USA, 2014.
    [23]
    颜熹琳, 唐明峰, 甘海啸, 等. 拉剪复合试验测试炸药晶体/粘结剂界面力学特性[J]. 含能材料, 2016,24(6): 587-591.(YAN Xilin, TANG Mingfeng, GAN Haixiao, et al. Mechanical properties of explosive crystal/binder interface based on tension-shear test[J]. Chinese Journal of Energetic Materials,2016,24(6): 587-591.(in Chinese))
    [24]
    黄西成, 李尚昆, 魏强, 等. 基于XFEM与Cohesive模型分析PBX裂纹产生与扩展[J]. 含能材料, 2017,25(8): 694-700.(HUANG Xicheng, LI Shangkun, WEI Qiang, et al. Analysis of crack initiation and growth in PBX energetic material using XFEM-based Cohesive method[J]. Chinese Journal of Energetic Materials,2017,25(8): 694-700.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1146) PDF downloads(304) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return