Citation: | ZHANG Guangsheng, WANG Yufeng, JI Anzhao, LIU Xuefen, CHEN Zhanjun. Mapping Calculation of Meandering River Well Locations Based on the Schwarz-Christoffel Transform[J]. Applied Mathematics and Mechanics, 2020, 41(7): 771-785. doi: 10.21656/1000-0887.400315 |
[1] |
单敬福, 张吉, 赵忠军, 等. 地下曲流河点坝砂体沉积演化过程分析: 以吉林油田杨大城子油层第23小层为例[J]. 石油学报, 2015,36(7): 809-819.(SHAN Jingfu, ZHANG Ji, ZHAO Zhongjun, et al. Analysis of sedimentary and evolution process for underground meandering river point bar: a case study from number 23 thin layer of Yangdachengzi oil reservoir in Jilin oilfield[J]. Acta Petrolei Sinica,2015,36(7): 809-819.(in Chinese))
|
[2] |
范峥, 吴胜和, 岳大力, 等. 曲流河点坝内部构型的嵌入式建模方法研究[J]. 中国石油大学学报(自然科学版), 2012,36(3): 1-6.(FAN Zheng, WU Shenghe, YUE Dali, et al. Embedding modeling method for internal architecture of point bar sand body in meandering river reservoir[J]. Journal of China University of Petroleum(Edition of Natural Science),2012,36(3): 1-6.(in Chinese))
|
[3] |
刘可可, 侯加根, 刘钰铭, 等. 多点地质统计学在点坝内部构型三维建模中的应用[J]. 石油与天然气地质, 2016,37(4): 577-583.(LIU Keke, HOU Jiagen, LIU Yuming, et al. Application of multiple-point geostatistics in 3D internal architecture modeling of point bar[J]. Oil and Gas Geology,2016,37(4): 577-583.(in Chinese))
|
[4] |
白振强, 王清华, 杜庆龙, 等. 曲流河砂体三维构型地质建模及数值模拟研究[J]. 石油学报, 2009,30(6): 898-902, 907.(BAI Zhenqiang, WANG Qinghua, DU Qinglong, et al. Study on 3D architecture geology modeling and digital simulation in meandering reservoir[J]. Acta Petrolei Sinica,2009,30(6): 898-902, 907.(in Chinese))
|
[5] |
邹拓, 吴淑艳, 陈晓智, 等. 曲流河点坝内部超精细建模研究: 以港东油田一区一断块为例[J]. 天然气地球科学, 2012,23(6): 1163-1169.(ZOU Tuo, WU Shuyan, CHEN Xiaozhi, et al. Super-fine modeling of the inner point bar of meandering river: a case study on the fault one of area Ⅰ in eastern Dagang oilfield[J]. Natural Gas Geoscience,2012,23(6): 1163-1169.(in Chinese))
|
[6] |
COSTAMAGNA E, FANNI A. Analysis of rectangular coaxial structures by numerical inversion of the Schwarz-Christoffel transformation[J]. IEEE Transactions on Magnetics,1992,28(2): 1454-1457.
|
[7] |
COSTAMAGNA E. A new approach to standard Schwarz-Christoffel formula calculations[J]. Microwave and Optical Technology Letters,2002,32(3): 196-199.
|
[8] |
HOWELL L H, TREFETHEN L N. A modified Schwarz-Christoffel transformation for elongated regions[J]. SIAM Journal on Scientific and Statistical Computing,1990,11(5): 928-949.
|
[9] |
DRISCOLL T A. Algorithm 843: improvements to the Schwarz-Christoffel toolbox for MATALAB[J]. ACM Transactions on Mathematical Software,2005,31(2): 239-251.
|
[10] |
NATARAJAN S, BORDAS S, MAHAPATRA D R. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping[J]. International Journal for Numerical Methods in Engineering,2009,80(1): 103-134.
|
[11] |
CROWDY D. The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains[J]. Proceedings of the Royal Society,2005,146(2061): 2653-2678.
|
[12] |
王玉风, 姬安召, 崔建斌. 矩形到任意多边形区域的Schwarz-Christoffel变换数值解法[J]. 应用数学和力学, 2019,40(1): 75-88.(WANG Yufeng, JI Anzhao, CUI Jianbin. Numerical solution of Schwarz-Christoffel transformation from rectangles to arbitrary polygonal domains[J]. Applied Mathematics and Mechanics,2019,40(1): 75-88.(in Chinese))
|
[13] |
崔建斌, 姬安召, 王玉风, 等. 单位圆到任意多边形区域的Schwarz Christoffel变换数值解法[J]. 浙江大学学报(理学版), 2017,44(2): 161-167.(CUI Jianbin, JI Anzhao, WANG Yufeng, et al. Numerical solution method for Schwarz Christoffel transformation from unit circle to arbitrary polygon area[J]. Journal of Zhejiang University(Science Edition),2017,44(2): 161-167.(in Chinese))
|
[14] |
陈汉武, 朱建锋, 阮越, 等. 带交叉算子的量子粒子群优化算法[J]. 东南大学学报(自然科学版), 2016,46(1): 23-29.(CHEN Hanwu, ZHU Jianfeng, RUAN Yue, et al. Quantum particle swarm optimization algorithm with crossover operator[J]. Journal of Southeast University(Natural Science Edition),2016,46(1): 23-29.(in Chinese))
|
[15] |
田瑾. 高维多峰函数的量子行为粒子群优化算法改进研究[J]. 控制与决策, 2016,31(11): 1967-1972.(TIAN Jin. Improvement of quantum-behaved particle swarm optimization algorithm for high-dimensional and multi-modal functions[J]. Control and Decision,2016,31(11): 1967-1972.(in Chinese))
|
[16] |
程林辉, 钟洛. 求解多峰函数优化问题的并行免疫遗传算法[J]. 微电子学与计算机, 2015,32(5): 117-121.(CHENG Linhui, ZHONG Luo. A parallel immune genetic algorithm for multimodal function optimization problem[J]. Microelectronics and Computer,2015,32(5): 117-121.(in Chinese))
|
[17] |
高岳林, 余雅萍. 基于混合量子粒子群优化的投资组合模型及实证分析[J]. 工程数学学报, 2017,34(1): 21-30.(GAO Yuelin, YU Yaping. Portfolio model based on hybrid quantum particle swarm optimization with empirical research[J]. Chinese Journal of Engineering Mathematics,2017,34(1): 21-30.(in Chinese))
|
[18] |
ABRAMOWITZ M, STEGUNIA. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables [M]. Washington DC: Dover Publications, 1996.
|