CHANG Long, LIU Quan-sheng, JIAN Yong-jun, Burenmandula, SUN Yan-jun. Oscillating Flow in Annular Microchannels With Sinusoidally Corrugated Walls[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1118-1128. doi: 10.21656/1000-0887.370116
Citation: CHANG Long, LIU Quan-sheng, JIAN Yong-jun, Burenmandula, SUN Yan-jun. Oscillating Flow in Annular Microchannels With Sinusoidally Corrugated Walls[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1118-1128. doi: 10.21656/1000-0887.370116

Oscillating Flow in Annular Microchannels With Sinusoidally Corrugated Walls

doi: 10.21656/1000-0887.370116
Funds:  The National Natural Science Foundation of China(11562014;11472140)
  • Received Date: 2016-04-14
  • Rev Recd Date: 2016-05-25
  • Publish Date: 2016-10-15
  • Oscillating flow in annular microchannels with sinusoidal wall roughness was investigated. The oscillating flow of incompressible viscous fluid was driven by a time-periodically oscillating pressure gradient. Approximate solutions of the velocity and flow rate in the annular microchannel were obtained through computation of the momentum conservation equations in the cylindrical coordinate system with the perturbation method. Based on these approximate solutions, the effects of the relevant nondimensional parameters, such as Reynolds number Re, pressure gradient amplitude A, sinusoidal roughness amplitude ε, ratio of the inner radius to the outer radius α, phase difference β and wave number λ, on velocity u and flow rate Φm, were analyzed. The results show that the velocity increases with A and decreases with Re, and phase lag χ increases with Re.
  • loading
  • [1]
    DENG Jian, SHAO Xue-ming, REN An-lu. Vanishing of three-dimensionality in the wake behind a rotationally oscillating circular cylinder[J]. Journal of Hydrodynamics,2007,19(6): 751-755.
    [2]
    LIANG Bing-chen, LI Hua-jun, Lee D. Bottom shear stress under wave-current interaction[J]. Journal of Hydrodynamics,2008,20(1): 88-95.
    [3]
    Jensen O E, Heil M. High-frequency self-excited oscillations in a collapsible-channel flow[J]. Journal of Fluid Mechanics,2003,481: 235-268.
    [4]
    PENG Xiao-xing, Hsu C T. Analysis and measurement of Stokes layer flow in an oscillating narrow channel[J]. Journal of Hydrodynamics,2008,20(6): 770-775.
    [5]
    Nazar M, Zulqarnain M, Akram M S, Asif M. Flow through an oscillating rectangular duct for generalized Maxwell fluid with fractional derivatives[J]. Communications in Nonlinear Science and Numerical Simulation,2012,17(8): 3219-3234.
    [6]
    Nomura T, Suzuki Y, Uemura M, Kobayashi N. Aerodynamic forces on a square cylinder in oscillating flow with mean velocity[J]. Journal of Wind Engineering and Industrial Aerodynamics,2003,91(1/2): 199-208.
    [7]
    Ibrahim M B, Hashim W. Oscillating flow in channels with a sudden change in cross section[J]. Computers & Fluids,1994,23(1): 211-224.
    [8]
    Bellhouse B J, Bellhouse F H, Curl C M,MacMillan T I, Gunning A J, Spratt E H, MacMurray S B, Nelems J M. A high efficiency membrane oxygenator and pulsatile pumping system, and its application to animal trials[J]. ASAIO Journal,1973,19(1): 72-79.
    [9]
    Yin D, Ma H B. Analytical solution of oscillating flow in a capillary tube[J]. International Journal of Heat and Mass Transfer,2013,66: 699-705.
    [10]
    Yin D, Ma H B. Analytical solution of heat transfer of oscillating flow at a triangular pressure waveform[J]. International Journal of Heat and Mass Transfer, 2014,70: 46-53.
    [11]
    ZHENG Lian-cun, LI Chun-rui, ZHANG Xin-xin, GAO Ying-tao. Exact solutions for the unsteady rotating flows of a generalized Maxwell fluid with oscillating pressure gradient between coaxial cylinders[J]. Computers & Mathematics With Applications,2011,62(3): 1105-1115.
    [12]
    Sato Y, Kanki H. Simplification of formulas for compression wave and oscillating flow in circular pipe[J].Applied Acoustics,2008,69(10): 901-912.
    [13]
    Placzek A, Sigrist J F, Hamdouni A. Numerical simulation of an oscillating cylinder in a cross-flow at low Reynolds number: forced and free oscillations[J]. Computers & Fluids,2009,38(1): 80-100.
    [14]
    Shah S B H, LU Xi-yun. Numerical simulation of an oscillating flow past a circular cylinder in the vicinity of a plane wall[J]. Journal of Hydrodynamics,2008,20(5): 547-552.
    [15]
    Nam K, Jeong S. Novel flow analysis of regenerator under oscillating flow with pulsating pressure[J].Cryogenics,2005,45(5): 368-379.
    [16]
    G·C·夏玛, M·简妮, M·察尼特拉. 磁场对具有压力梯度的低频振荡自然对流的影响[J]. 应用数学和力学, 2003,24(3): 245-252.(Sharma G C, Jain M, Chandra M. The effect of magnetic fields on low frequency oscillating natural convection with pressure gradient[J]. Applied Mathematics and Mechanics,2003,24(3): 245-252.(in Chinese))
    [17]
    陆夕云, 凌国灿. 圆柱振荡绕流的三维不稳定性研究[J]. 应用数学和力学, 2003,24(7): 699-707.(LU Xi-yun, LING Guo-chan. Three-dimensional instability of an oscillating viscous flow past a circular cylinder[J]. Applied Mathematics and Mechanics,2003,24(7): 699-707.(in Chinese))
    [18]
    Wang C Y. On Stokes flow between corrugated plates[J]. Journal of Applied Mechanics,1979,46(2): 462-464.
    [19]
    王昊利, 王元, 刘江. 平板微通道壁面粗糙度对流场影响的摄动分析[J]. 西安交通大学学报, 2005,39(5): 540-543.(WANG Hao-li, WANG Yuan, LIU Jiang. Perturbation analysis of wall roughness effect on flow in micro-channel between two parallel plates[J]. Journal of Xi’an Jiaotong University,2005,39(5): 540-543.(in Chinese))
    [20]
    张春平, 唐大伟, 韩鹏, 祝捷. 粗糙度对微细圆管内流动特性影响的摄动分析[J]. 工程热物理学报, 2008,29(5): 849-852.(ZHANG Chun-ping, TANG Da-wei, HAN Peng, ZHU Jie. A perturbation analysis of wall roughness effects on flow in microtube[J]. Journal of Engineering Thermophysics,2008,29(5): 849-852.(in Chinese))
    [21]
    焦云龙, 刘小君, 逄明华, 刘焜. 液滴平壁铺展过程中的滞后效应及力学机制研究[J]. 应用数学和力学,2016,37(1): 14-26.(JIAO Yun-long, LIU Xiao-jun, PANG Ming-hua, LIU Kun. Study of contact angle hysteresis at moving contact lines based on CFD simulation and mechanical analysis[J]. Applied Mathematics and Mechanics,2016,37(1): 14-26.(in Chinese))
    [22]
    Chu Z K H. Slip flow in an annulus with corrugated walls[J]. Journal of Physics D: Applied Physics,2000,33(6): 627-631.
    [23]
    Tsikata J M, Tachie M F. Effects of roughness and adverse pressure gradient on the turbulence structure[J]. International Journal of Heat and Fluid Flow,2013,44: 239-257.
    [24]
    Tsikata J M, Tachie M F. Adverse pressure gradient turbulent flows over rough walls[J]. International Journal of Heat and Fluid Flow,2013,39: 127-145.
    [25]
    Sisavath S, Al-Yaaruby A, Pain C C, Zimmerman R W. A simple model for deviations from the cubic law for a fracture undergoing dilation or closure[J]. Pure and Applied Geophysics,2003,160(5/6): 1009-1022.
    [26]
    Buren M, Jian Y J, Chang L. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls[J]. Journal of Physics D: Applied Physics,2014,47(42): 425501.
    [27]
    Buren M,Jian Y. Electromagnetohydrodynamic(EMHD) flow between two transversely wavy microparallel plates[J]. Electrophoresis,2015,36(14): 1539-1548.
    [28]
    Thomas A M, Thich G K, Narayanan R. Low Reynolds number flow in a channel with oscillating wavy-walls: an analytical study[J]. Chemical Engineering Science,2006,61(18): 6047-6056.
    [29]
    刘雅鹏, 菅永军, 布仁满都拉. 粗糙微管道壁面振荡的磁流体流动[J]. 内蒙古大学学报(自然科学版), 2015,46(4): 363-369.(LIU Ya-peng, JIAN Yong-jun, Burenmandula. Magnetohydrodynamic(MHD) flow through two parallel microchannels with oscillating corrugated walls[J]. Journal of Inner Mongolia University(Natural Science Edition),2015,46(4): 363-369.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1279) PDF downloads(517) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return