LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106
Citation: LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1050-1059. doi: 10.21656/1000-0887.370106

Structure-Preserving Algorithm for Fluid-Solid Coupling Dynamic Responses of Saturated Poroelastic Rods

doi: 10.21656/1000-0887.370106
Funds:  The National Natural Science Foundation of China(11372252;11372253)
  • Received Date: 2016-04-08
  • Rev Recd Date: 2016-05-07
  • Publish Date: 2016-10-15
  • Based on the momentum balance equations for 3D fluid-solid mixture, the momentum balance equations for pore fluid and the balance equations of volume fraction, the fluid-solid coupling axial vibration equations for saturated poroelastic rods were established. With the orthogonal variables, a 1st-order multi-symplectic structure-preserving form of the axial vibration equations was built firstly, then the generalized multi-symplectic conservation law and the errors of the modified local momentum were derived. The axial displacement profile of the solid skeleton and the seepage velocity profile of the pore fluid were obtained, where the effect of the dissipation constant on the axial dynamic responses was also revealed numerically. Compared with the analytical solution derived with the variable-separating method, this generalized multi-symplectic structure-preserving scheme has excellent validity and high accuracy. The generalized multi-symplectic conservation law and its corresponding conditions were presented. Meanwhile, the numerical errors of the generalized multi-symplectic conservation law and the generalized multi-symplectic local momentum were both investigated for different dimensionless parameters. The results show that the proposed generalized multi-symplectic structure-preserving scheme has long-time numerical stability and good conservation properties.
  • loading
  • [1]
    陈炜昀, 夏唐代, 陈伟, 翟朝娇. 平面P波在弹性介质和非饱和多孔弹性介质分界面上的传播[J]. 应用数学和力学, 2012,33(7): 781-795.(CHEN Wei-yun, XIA Tang-dai, CHEN Wei, ZHAI Chao-jiao. Propagation of plane P-waves at the interface between an elastic solid and an unsaturated poroelastic medium[J]. Applied Mathematics and Mechanics,2012,33(7): 781-795.(in Chinese))
    [2]
    Lee S, Wheeler M F, Wick T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[J]. Computer Methods in Applied Mechanics and Engineering,2016,305: 111-132.
    [3]
    Dehghan M, Jamal-Abad M T, Rashidi S. Analytical interpretation of the local thermal non-equilibrium condition of porous media imbedded in tube heat exchangers[J]. Energy Conversion and Management,2014,85: 264-271.
    [4]
    王克用, 王大中, 李培超. 多孔介质平板通道传热模型的两种求解方法[J]. 应用数学和力学, 2015,36(5): 494-504.(WANG Ke-yong, WANG Da-zhong, LI Pei-chao. Two decoupling methods for the heat transfer model of a plate channel filled with a porous medium[J]. Applied Mathematics and Mechanics,2015,36(5): 494-504.(in Chinese))
    [5]
    施飞, 程晓民, 张韬杰, 董湘怀. 树脂传递成型过程中温度场的数值研究[J]. 应用数学和力学, 2016,37(3): 256-265.(SHI Fei, CHENG Xiao-min, ZHANG Tao-jie, DONG Xiang-huai. Numerical research of temperature field during resin transfer molding[J]. Applied Mathematics and Mechanics,2016,37(3): 256-265.(in Chinese))
    [6]
    宋少沪, 卢欣, 杨骁. 饱和多孔弹性Timoshenko梁的非线性变形分析[J]. 力学季刊, 2012,33(1): 121-129.(SONG Shao-hu, LU Xin, YANG Xiao. Nonlinear deformation analysis of saturated poroelastic Timoshenko beam[J]. Chinese Quarterly of Mechanics,2012,33(1): 121-129.(in Chinese))
    [7]
    杨骁, 吕新华. 饱和多孔弹性Timoshenko梁的大挠度分析[J]. 固体力学学报, 2012,33(2): 103-111.(YANG Xiao, Lü Xin-hua. Large deflection analysis of saturated poroelastic Timoshenko beam[J]. Chinese Journal of Solid Mechanics,2012,33(2): 103-111.(in Chinese))
    [8]
    CAI Jia-xiang, YANG Bin, LIANG Hua. Multisymplectic implicit and explicit methods for Klein-Gordon-Schr?dinger equations[J]. Chinese Physics B,2013,22(3): 99-105.
    [9]
    LI Hao-chen, SUN Jian-qiang, QIN Meng-zhao. New explicit multi-symplectic scheme for nonlinear wave equation[J]. Applied Mathematics and Mechanics(English Edition ), 2014,35(3): 369-380.
    [10]
    McDonald F, Mclachlan R, Moore B, Quispel R. Travelling wave solutions of multisymplectic discretizations of semi-linear wave equations[J]. Mathematics,2015,69(3/4): 290-303.
    [11]
    HU Wei-peng, DENG Zi-chen, QIN Yu-yue. Multi-symplectic method to simulate soliton resonance of (2+1)-dimensional Boussinesq equation[J]. Journal of Geometric Mechanics,2013,5(3): 295-318.
    [12]
    HU Wei-peng, DENG Zi-chen, ZHANG Yu. Multi-symplectic method for peakon-antipeakon collision of quasi-Degasperis-Procesi equation[J]. Computer Physics Communications,2014,185(7): 2020-2028.
    [13]
    秦于越, 邓子辰, 胡伟鹏. 无限维Hamilton系统稳态解的保结构算法[J]. 应用数学和力学, 2014,35(1): 22-28.(QIN Yu-yue, DENG Zi-chen, HU Wei-peng. Structure-preserving algorithm for steady-state solution to the infinite dimensional Hamilton system[J]. Applied Mathematics and Mechanics,2014,35(1): 22-28.(in Chinese))
    [14]
    HU Wei-peng, DENG Zi-chen, HAN Song-mei, ZHANG Wen-rong. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs[J]. Journal of Computational Physics,2013,235: 394-406.
    [15]
    HU Wei-peng, DENG Zi-chen, WANG Bo, OUYANG Hua-jiang. Chaos in an embedded single-walled carbon nanotube[J]. Nonlinear Dynamics,2013,72(1): 389-398.
    [16]
    HU Wei-peng, DENG Zi-chen. Chaos in embedded fluid-conveying single-walled carbon nanotube under transverse harmonic load series[J]. Nonlinear Dynamics,2015,79(1): 325-333.
    [17]
    刘雪梅, 邓子辰, 胡伟鹏. 饱和多孔弹性杆热传导的广义多辛方法及其数值实现[J]. 西北工业大学学报, 2015,33(2): 265-270.(LIU Xue-mei, DENG Zi-chen, HU Wei-peng. Generalized multi-symplectic method and numerical experiment for thermal conduction of saturated poroelastic rod[J]. Journal of Northwest Polytechnical University,2015,33(2): 265-270.(in Chinese))
    [18]
    YANG Xiao. Gurtin-type variational principles for dynamics of a non-local thermal equilibrium saturated porous medium[J]. Acta Mechanics Solida Sinica,2005,18(1): 37-45.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (919) PDF downloads(579) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return