2024, 45(8): 1024-1036.
doi: 10.21656/1000-0887.450131
Abstract:
Sandwich structures are widely used in engineering fields, but their connection and assembly problems become more and more prominent, especially for combat equipment under strong dynamic loads. How to design connection joints to improve the reliability and maintainability of the structure is a hot research topic at present. Aimed at the connection and assembly problem of honeycomb sandwich protection structures in typical combat environment, a quick assembly joint locked by square tubes was designed, and the dynamic responses of the connection structure under different impulses were obtained by foam projectile impact tests. Then the finite element method was used to simulate the impact test, and the simulation results agree well with the experimental results. On this basis, the effects of geometric parameters such as wall thicknesses and connection unit widths on the peak deflections of the structure under the foam projectile impacts were further discussed with the finite element model. The results indicate that, the thinner wall thickness(tt/tf≤0.375) of the square tube makes the connection structure prone to collapse, leading to a significant increase in peak deflections. However, a smaller width (2a/W≤0.267) of the connection unit causes the panel tensile strength to decrease, thereby weakening the impact resistance of the connection structure. In addition, as the connection unit width increases, the peak deflection of the connection structure will first decrease and then increase. This is due to the competition mechanism between the effective cross-sectional area of the connection unit and the mechanical interlocking contact area. The proposed quick assembly connection joint can effectively resist dynamic impact loads, has good impact energy absorption abilities, and easy maintenance and replacement. It is hopeful to be applied to the connection of various types of main combat equipment protection structures, and provides reference for the impact resistance design of sandwich connection structures.