|
[2]KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam: Elsevier, 2006: 69-132.
|
|
PODLUBNY I. Fractional Differential Equations[M]. New York: Academic Press, 1999: 1-198.
|
|
[3]LI C P, CAI M. Theory and Numerical Approximations of Fractional Integrals and Derivatives[M]. Philadelphia: SIAM, 2019: 1-71.
|
|
[4]DENISOV S I, KANTZ H. Continuous-time random walk theory of superslow diffusion[J]. EPL (Europhysics Letters), 2010,92(3): 30001.
|
|
[5]LOMNITZ C. Application of the logarithmic creep law to stress wave attenuation in the solid earth[J]. Journal of Geophysical Research,1962,67(1): 365-368.
|
|
[6]GARRA R, MAINARDI F, SPADA G. A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus[J]. Chaos,Solitons & Fractals,2017,102: 333-338.
|
|
[7]LI C P, LI Z Q. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation[J]. Journal of Nonlinear Science,2021,31(2): 31.
|
|
[8]WANG Z. Non-uniform L1/DG method for one-dimensional time-fractional convection equation[J]. Computational Methods for Differential Equations,2021,9(4): 1069-1082.
|
|
[9]LI C, WANG Z. Non-uniform L1/discontinuous Galerkin approximation for the time-fractional convection equation with weak regular solution[J]. Mathematics and Computers in Simulation,2021,182: 838-857.
|
|
[10]王震. Caputo型对流方程的间断伽辽金有限元方法[J]. 重庆理工大学学报(自然科学版), 2022,36(9): 253-259. (WANG Zhen. Discontinuous Galerkin finite element method for the Caputo-type convection equation[J]. Journal of Chongqing University of Technology (Natural Science),2022,36(9): 253-259. (in Chinese))
|
|
[11]LI C P, LI D X. The variational physics-informed neural networks for time-fractional nonlinear conservation laws[J]. IFAC-PapersOnLine,2024,58(12): 472-477.
|
|
[12]STYNES M, O’RIORDAN E, GRACIA J L. Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation[J]. SIAM Journal on Numerical Analysis,2017,55(2): 1057-1079.
|
|
[13]LIAO H L, LI D F, ZHANG J W. Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations[J]. SIAM Journal on Numerical Analysis,2018,56(2): 1112-1133.
|
|
[14]WANG Z, SUN L H. The Allen-Cahn equation with a time Caputo-Hadamard derivative: mathematical and numerical analysis[J]. Communications in Analysis and Mechanics,2023,15(4): 611-637.
|
|
[15]WANG Z, SUN L H. A numerical approximation for the Caputo-Hadamard derivative and its application in time-fractional variable-coefficient diffusion equation[J]. Discrete and Continuous Dynamical Systems-Series S,2024,17(8): 2679-2705.
|
|
[16]CIARLET P G. The Finite Element Method for Elliptic Problems[M]. Amsterdam: North-Holland Pub. Co., 1978: 174-286.
|
|
[17]汪精英, 翟术英. 分数阶Cahn-Hilliard方程的高效数值算法[J]. 应用数学和力学, 2021,42(8): 832-840. (WANG Jingying, ZHAI Shuying. An efficient numerical algorithm for fractional Cahn-Hilliard equations[J]. Applied Mathematics and Mechanics,2021,42(8): 832-840. (in Chinese))
|
|
[18]刘家惠, 邵林馨, 黄健飞. 带Caputo导数的变分数阶随机微分方程的EuIer-Maruyama方法[J]. 应用数学和力学, 2023,44(6): 731-743.(LIU Jiahui, SHAO Linxin, HUANG Jianfei. An Euler-maruyama method for variable fractional stochastic differential equations with caputo derivatives[J]. Applied Mathematics and Mechanics,2023,44(6): 731-743. (in Chinese))
|