• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

修正Timoshenko梁系统的归一化与对偶关系

蔡汶秀 郑罡 唐宇 孙测世 叶念雨 薛文琪

蔡汶秀, 郑罡, 唐宇, 孙测世, 叶念雨, 薛文琪. 修正Timoshenko梁系统的归一化与对偶关系[J]. 应用数学和力学, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292
引用本文: 蔡汶秀, 郑罡, 唐宇, 孙测世, 叶念雨, 薛文琪. 修正Timoshenko梁系统的归一化与对偶关系[J]. 应用数学和力学, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292
CAI Wenxiu, ZHENG Gang, TANG Yu, SUN Ceshi, YE Nianyu, XUE Wenqi. Normalization and Duality Relations of Modified Timoshenko Beams[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292
Citation: CAI Wenxiu, ZHENG Gang, TANG Yu, SUN Ceshi, YE Nianyu, XUE Wenqi. Normalization and Duality Relations of Modified Timoshenko Beams[J]. Applied Mathematics and Mechanics, 2025, 46(12): 1540-1549. doi: 10.21656/1000-0887.450292

修正Timoshenko梁系统的归一化与对偶关系

doi: 10.21656/1000-0887.450292
基金项目: 

国家自然科学基金(52378284)

详细信息
    作者简介:

    蔡汶秀(1997—),女,博士生; 郑罡(1972—),男,研究员,博士,博士生导师(E-mail: zhenggang@cqjtu.edu.cn).

    通讯作者:

    郑罡(1972—),男,研究员,博士,博士生导师(E-mail: zhenggang@cqjtu.edu.cn).

  • 中图分类号: Q342

Normalization and Duality Relations of Modified Timoshenko Beams

Funds: 

The National Science Foundation of China(52378284)

  • 摘要: 为研究修正Timoshenko梁系统的对偶条件和分类,讨论其理论意义.首先通过引入时间和空间缩放变换,实现了对修正Timoshenko梁动力学方程的标准化;其次,基于该归一化方程,论证了在任意相同边界条件下参数型对偶关系的存在性;然后,探讨了不同截面类型参数型对偶关系的特点;最后,在固支铰支、固支固支和固支自由这三种边界条件下,求解标准化方程,提出了构造对偶梁的方法,并通过文献算例展示了修正Timoshenko梁参数型对偶性的特征.结果表明:归一化算法求解修正Timoshenko对偶梁的频率完全相同,且基于该算法可论证其修正Timoshenko梁的参数型对偶条件.动力学特性的参数型对偶关系为修正Timoshenko梁的一种本质属性,时空缩放变换为揭示该特性的有效方法.
  • 周博, 郑雪瑶, 康泽天, 等. 基于修正偶应力理论的Timoshenko微梁模型和尺寸效应研究[J]. 应用数学和力学, 2019,40(12): 1321-1334.

    (ZHOU Bo, ZHENG Xueyao, KANG Zetian, et al. A Timoshenko micro-beam model and its size effects based on the modified couple stress theory[J].Applied Mathematics and Mechanics,2019,40(12): 1321-1334. (in Chinese))
    [2]关玉铭, 戈新生. 基于非约束模态的中心刚体-Timoshenko梁动力学建模与分析[J]. 应用数学和力学, 2022,43(2): 156-165. (GUAN Yuming, GE Xinsheng. Dynamic modeling and analysis of the central rigid body-Timoshenko beam model based on unconstrained modes[J].Applied Mathematics and Mechanics,2022,43(2): 156-165. (in Chinese))
    [3]LOVE A E.A Treatise on the Mathematical Theory of Elasticity[M]. New York: Dover, 1927: 314-331.
    [4]TRAILL-NASH R W, COLLAR A R. The effects of shear flexibility and rotatory inertia on the bending vibrations of beams[J].The Quarterly Journal of Mechanics and Applied Mathematics,1953,6(2): 186-222.
    [5]LUBLINER E, ELISHAKOFF I. Random vibration of system with finitely many degrees of freedom and several coalescent natural frequencies[J].International Journal of Engineering Science,1986,24(4): 461-470.
    [6]ELISHAKOFF I.Handbook on Timoshenko-Ehrenfest Beam and Uflyand-Mindlin Plate Theories[M]. New York: Isaac Elishakoff, 2019: 107-138.
    [7]余云燕, 孔嘉乐, 陈进浩, 等. 变截面修正Timoshenko梁自振频率的回传射线矩阵法分析[J]. 地震工程学报, 2022,44(4): 751-758. (YU Yunyan, KONG Jiale, CHEN Jinhao, et al. Natural frequency of a modified Timoshenko beam with variable cross-section with the method of reverberation ray matrix[J].China Earthquake Engineering Journal,2022,44(4): 751-758. (in Chinese))
    [8]LI M L, WEI P J, ZHOU X L. Wave propagation and free vibration of a Timoshenko beam mounted on the viscoelastic Pasternak foundation modeled by fraction-order derivatives[J].Mechanics of Time-Dependent Materials,2023,27(4): 1209-1223.
    [9]吴晓, 罗佑新. 用Timoshenko梁修正理论研究功能梯度材料梁的动力响应[J]. 振动与冲击, 2011,30(10): 245-248. (WU Xiao, LUO Youxin. Dynamic responses of a beam with functionally graded materials with Timoshenko beam correction theory[J].Journal of Vibration and Shock,2011,30(10): 245-248. (in Chinese))
    [10]FALSONE G, SETTINERI D, ELISHAKOFF I. A new class of interdependent shape polynomials for the FE dynamic analysis of Mindlin plate Timoshenko beam[J].Meccanica,2015,50(3): 767-780.
    [11]ELISHAKOFF I, TONZANI G M, MARZANI A. Effect of boundary conditions in three alternative models of Timoshenko-Ehrenfest beams on Winkler elastic foundation[J].Acta Mechanica,2018,229(4): 1649-1686.
    [12]ELISHAKOFF I, TONZANI G M, MARZANI A. Three alternative versions of Bresse-Timoshenko theory for beam on pure Pasternak foundation[J].International Journal of Mechanical Sciences,2018,149: 402-412.
    [13]KARNOPP B H. Duality relations in the analysis of beam oscillations[J].Zeitschrift für Angewandte Mathematik und Physik ZAMP,1967,18(4): 575-580.
    [14]CHEN Q, ZHU D. Vibrational analysis theory and application to elastic-viscoelastic composite structures[J].Computers & Structures,1990,37(4): 585-595.
    [15]RAM Y M, ELHAY S. Dualities in vibrating rods and beams: continuous and discrete models[J].Journal of Sound and Vibration,1995,184(5): 759-766.
    [16]LI X, XU F, ZHANG Z. Symplectic method for natural modes of beams resting on elastic foundations[J].Journal of Engineering Mechanics,2018,144(4): 04018009.
    [17]胡海岩. 梁在固有振动中的对偶关系[J]. 力学学报, 2020,52(1): 139-149. (HU Haiyan. Duality relations of beams in natural vibrations[J].Chinese Journal of Theoretical and Applied Mechanics,2020,52(1): 139-149. (in Chinese))
    [18]ELISHAKOFF I, AMATO M. Flutter of a beam in supersonic flow: truncated version of Timoshenko-Ehrenfest equation is sufficient[J].International Journal of Mechanics and Materials in Design,2021,17(4): 783-799.
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2025-11-17
  • 网络出版日期:  2025-12-31

目录

    /

    返回文章
    返回