留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演

马培源 林玉亮 陈荣

马培源, 林玉亮, 陈荣. 铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演[J]. 应用数学和力学, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264
引用本文: 马培源, 林玉亮, 陈荣. 铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演[J]. 应用数学和力学, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264
MA Peiyuan, LIN Yuliang, CHEN Rong. Parametric Analysis and Parameter Inversion of the Crystal Plasticity Constitutive Model for as-Cast TiZrNbV Refractory High Entropy Alloys[J]. Applied Mathematics and Mechanics, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264
Citation: MA Peiyuan, LIN Yuliang, CHEN Rong. Parametric Analysis and Parameter Inversion of the Crystal Plasticity Constitutive Model for as-Cast TiZrNbV Refractory High Entropy Alloys[J]. Applied Mathematics and Mechanics, 2025, 46(5): 563-581. doi: 10.21656/1000-0887.450264

铸态TiZrNbV晶体塑性本构模型的参数分析与参数反演

doi: 10.21656/1000-0887.450264
基金项目: 

国家自然科学基金 12072369

国家自然科学基金 12072368

湖南省杰出青年基金 2022JJ10058

详细信息
    作者简介:

    马培源(1997—),男,博士生(E-mail: mapeiyuan@nudt.edu.cn)

    通讯作者:

    陈荣(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: r_chen@nudt.edu.en).

  • 中图分类号: O341

Parametric Analysis and Parameter Inversion of the Crystal Plasticity Constitutive Model for as-Cast TiZrNbV Refractory High Entropy Alloys

  • 摘要: 难熔高熵合金因其卓越的力学性能而备受关注,但其细观特征行为对其宏观力学行为的影响尚未被充分理解. 随着对材料细观力学行为研究需求的增加,晶体塑性有限元方法已成为揭示晶体材料细观机制的关键工具. 由于晶体塑性本构模型包含众多复杂参数,深入分析这些参数对于理解合金的细观力学行为至关重要. 研究中采用的晶体塑性本构模型考虑了Peierls应力,这一因素能够反映材料的短程势垒,从而更准确地模拟材料的应变率行为. 通过试验设计和极差分析,识别了影响合金力学性能的关键本构参数. 单因素分析明确了关键参数对材料力学特性的具体影响. 在参数反演方面,提出了一种基于优化设计的参数反演方法,该方法结合支持向量回归法和优化算法,能够有效地从宏观力学测试数据中反演出晶体塑性本构参数. 针对铸态TiZrNbV合金,成功反演出一组最优参数,仿真与试验的一致性验证了该方法的有效性. 研究为难熔高熵合金的力学行为预测、材料设计以及性能优化提供了有力的支撑.
  • 图  1  参数反演步骤流程

    Figure  1.  The flowchart of parameter inversion steps

    图  2  参数反演优化设计流程

    Figure  2.  The flow chart of the parameter inversion optimization design method

    图  3  RVE模型的示意图

    Figure  3.  Schematic diagram of the RVE model

    图  4  不同应变率下的应力-应变试验结果[25-26]

    Figure  4.  Experimental stress-strain results at different strain rates[25-26]

    图  5  各设计变量对误差响应指标的影响权重

    Figure  5.  The influence weight of each design variable on the error response indexes

    图  6  不同加载率下,各设计变量对各力学指标的影响程度

    Figure  6.  The magnitudes of effects of each design variable on each mechanical index at different loading rates

    图  7  不同n0下,多晶RVE模型的准静态、动态力学响应结果

    Figure  7.  Quasi-static and dynamic mechanical response results of the polycrystalline RVE model with different n0 values

    图  8  不同τ0下,RVE模型的准静态、动态力学响应结果

    Figure  8.  Quasi-static and dynamic mechanical response results of the polycrystalline RVE model with different τ0 values

    图  9  不同τp0下,RVE模型的准静态、动态力学响应结果

    Figure  9.  Quasi-static and dynamic mechanical response results of the polycrystalline RVE model with different τp0 values

    图  10  不同Hk下,RVE模型的准静态、动态力学响应结果

    Figure  10.  Quasi-static and dynamic mechanical response results of the polycrystalline RVE model with different Hk values

    图  11  晶体塑性本构模型参数对材料力学性能的影响行为

    Figure  11.  Effects of crystal plasticity constitutive model parameters on the mechanical properties of materials

    图  12  代理模型训练集、测试集的预测情况

    Figure  12.  Prediction of the surrogate model training set and test set

    图  13  经50次优化求解后各材料参数优化结果的箱线图

    Figure  13.  Box plots of optimization results for each material parameter after 50 optimization solutions

    图  14  参数反演后的晶体塑性有限元模拟结果与试验结果对比

    Figure  14.  Comparison of crystal plasticity model simulation results after parameter inversion with experimental results

    图  15  不同加载条件下仿真结果与试验结果的力学响应特性对比

    Figure  15.  Comparison of mechanical response characteristics between simulation results and experimental results under different loading conditions

    表  1  试验设计各因素的取值范围

    Table  1.   The range of values for each factor in the experimental design

    design variable symbol lower limit upper limit
    initial hardening modulus h0/MPa 100 500
    saturation stress τs/MPa 220 780
    initial critical resolved shear stress τ0/MPa 200 700
    rate sensitivity exponent n0 30 80
    reference slip shear rate $\dot{\gamma}$0/s-1 2×10-3 5×10-3
    Peierls stress τp0/MPa 300 900
    reference strain rate $\dot{\gamma}$p0/s-1 5.7×107 1.51×108
    kink-pair formation enthalpy Hk/eV 0.38 0.56
    下载: 导出CSV

    表  2  参数单因素分析的设计变量取值情况

    Table  2.   Design variable values for parametric univariate analysis of variance

    design variable symbol level 1 level 2 level 3 level 4 level 5
    rate sensitivity exponent n0 30 15 22.5 37.5 45
    initial critical resolved shear stress τ0/MPa 300 150 225 375 450
    Peierls stress τp0/MPa 500 250 375 625 750
    kink-pair formation enthalpy Hk/eV 0.62 0.31 0.47 0.78 0.94
    saturation stress τs/MPa 600 - - - -
    initial hardening modulus h0/MPa 200 - - - -
    reference slip shear rate $\dot{\gamma}$0/s-1 3×10-3 - - - -
    reference strain rate $\dot{\gamma}$p0/s-1 1×108 - - - -
    下载: 导出CSV

    表  3  铸态TiZrNbV高熵合金的晶体塑性本构模型参数

    Table  3.   Crystal plasticity constitutive model parameters for cast TiZrNbV high-entropy alloys

    design variable symbol value
    initial hardening modulus h0/MPa 91
    saturation stress τs/MPa 430
    initial critical resolved shear stress τ0/MPa 410
    rate sensitivity exponent n0 34
    reference slip shear rate $\dot{\gamma}$0/s-1 3.6×10-3
    Peierls stress τp0/MPa 320
    reference strain rate $\dot{\gamma}$p0/s-1 9.2×107
    kink-pair formation enthalpy Hk/eV 0.60
    下载: 导出CSV
  • [1] SENKOV O N, SENKOVA S V, MIRACLE D B, et al. Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system[J]. Materials Science and Engineering: A, 2013, 565: 51-62. doi: 10.1016/j.msea.2012.12.018
    [2] MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448-511. doi: 10.1016/j.actamat.2016.08.081
    [3] SENKOV O N, RAO S, CHAPUT K J, et al. Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys[J]. Acta Materialia, 2018, 151: 201-215. doi: 10.1016/j.actamat.2018.03.065
    [4] 唐宇, 王睿鑫, 李顺, 等. 高熵合金含能结构材料的潜力与挑战[J]. 含能材料, 2021, 29(10): 1008-1018. doi: 10.11943/CJEM2021087

    TANG Yu, WANG Ruixin, LI Shun, et al. Potential and challenges of high-entropy alloy energetic structural materials[J]. Chinese Journal of Energetic Materials, 2021, 29(10): 1008-1018. (in Chinese) doi: 10.11943/CJEM2021087
    [5] 梁秀兵, 万义兴, 莫金勇, 等. 新型高温高熵合金材料研究进展[J]. 科技导报, 2021, 39(11): 96-108.

    LIANG Xiubing, WAN Yixing, MO Jinyong, et al. Research progress in novel high-temperature high entropy alloys[J]. Science & Technology Review, 2021, 39(11): 96-108. (in Chinese)
    [6] SENKOV O N, WOODWARD C F. Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy[J]. Materials Science and Engineering: A, 2011, 529: 311-320. doi: 10.1016/j.msea.2011.09.033
    [7] MENG J, SHEN B, WANG J, et al. Energy-release behavior of TiZrNbV high-entropy alloy[J]. Intermetallics, 2023, 162: 108036. doi: 10.1016/j.intermet.2023.108036
    [8] MENG J Y, HE J Z, ZHANG B, et al. The effect of Ti and Zr content on the structure, mechanics and energy-release characteristics of Ti-Zr-Ta alloys[J]. Defence Technology, 2024, 31: 343-350. doi: 10.1016/j.dt.2023.01.007
    [9] XIE Q, ZHU Z, KANG G, et al. Crystal plasticity-based impact dynamic constitutive model of magnesium alloy[J]. International Journal of Mechanical Sciences, 2016, 119: 107-113. doi: 10.1016/j.ijmecsci.2016.10.012
    [10] LU Y, ZHU Z, LI D, et al. Constitutive model of 42CrMo steel under a wide range of strain rates based on crystal plasticity theory[J]. Materials Science and Engineering: A, 2017, 679: 215-222. doi: 10.1016/j.msea.2016.09.117
    [11] BOBBILI R, MADHU V. Constitutive modeling of dynamic flow behavior of Ti-5553 alloy[J]. Journal of Alloys and Compounds, 2019, 787: 260-266. doi: 10.1016/j.jallcom.2019.02.101
    [12] RAABE D, SACHTLEBER M, ZHAO Z, et al. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation[J]. Acta Materialia, 2001, 49(17): 3433-3441. doi: 10.1016/S1359-6454(01)00242-7
    [13] BERTIN M, DU C, HOEFNAGELS J P M, et al. Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation[J]. Acta Materialia, 2016, 116: 321-331. doi: 10.1016/j.actamat.2016.06.039
    [14] GALLARDO-BASILE F J, ROTERS F, JENTNER R M, et al. Application of a nanoindentation-based approach for parameter identification to a crystal plasticity model for bcc metals[J]. Materials Science and Engineering: A, 2023, 881: 145373. doi: 10.1016/j.msea.2023.145373
    [15] CHAKRABORTY A, EISENLOHR P. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations[J]. European Journal of Mechanics-A/Solids, 2017, 66: 114-124. doi: 10.1016/j.euromechsol.2017.06.012
    [16] HERRERA-SOLAZ V, LLORCA J, DOGAN E, et al. An inverse optimization strategy to determine single crystal mechanical behavior from polycrystal tests: application to AZ31 Mg alloy[J]. International Journal of Plasticity, 2014, 57: 1-15. doi: 10.1016/j.ijplas.2014.02.001
    [17] JI H S, SONG Q H, GUPTA M K, et al. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review[J]. Journal of Advanced Manufacturing Science and Technology, 2021, 1(2): 2021005. doi: 10.51393/j.jamst.2021005
    [18] SEDIGHIANI K, DIEHL M, TRAKA K, et al. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves[J]. International Journal of Plasticity, 2020, 134: 102779. doi: 10.1016/j.ijplas.2020.102779
    [19] SUN X C, WANG H M. A method for crystal plasticity model parameter calibration based on Bayesian optimization[M]//Magnesium Technology 2022. Cham: Springer International Publishing, 2022: 105-111.
    [20] 周瑞, 熊宇凯, 储节磊, 等. 基于机器学习和遗传算法的非局部晶体塑性模型参数识别[J]. 力学学报, 2024, 56(3): 751-762.

    ZHOU Rui, XIONG Yukai, CHU Jielei, et al. Parameter identification of nonlocal crystal plastic model based on machine learning and genetic algorithm[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 751-762. (in Chinese)
    [21] XU S, AN X, QIAO X, et al. Multi-output least-squares support vector regression machines[J]. Pattern Recognition Letters, 2013, 34(9): 1078-1084. doi: 10.1016/j.patrec.2013.01.015
    [22] 王兰, 董宜平, 曹进德. 基于准ARX模型和SVR算法的非线性系统切换控制[J]. 应用数学和力学, 2022, 43(11): 1281-1287. doi: 10.21656/1000-0887.430122

    WANG Lan, DONG Yiping, CAO Jinde. Switching control of nonlinear systems based on the quasi-ARX model and the SVR algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1281-1287. (in Chinese) doi: 10.21656/1000-0887.430122
    [23] 章海明, 徐帅, 李倩, 等. 晶体塑性理论及模拟研究进展[J]. 塑性工程学报, 2020, 27(5): 12-32.

    ZHANG Haiming, XU Shuai, LI Qian, et al. Progress of crystal plasticity theory and simulations[J]. Journal of Plasticity Engineering, 2020, 27(5): 12-32. (in Chinese)
    [24] HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain[J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401-413. doi: 10.1016/0022-5096(72)90017-8
    [25] REN K, LIU H, CHEN R, et al. Compression properties and impact energy release characteristics of TiZrNbV high-entropy alloy[J]. Materials Science and Engineering: A, 2021, 827: 142074. doi: 10.1016/j.msea.2021.142074
    [26] WANG J, BAI S, TANG Y, et al. Effect of the valence electron concentration on the yield strength of Ti-Zr-Nb-V high-entropy alloys[J]. Journal of Alloys and Compounds, 2021, 868: 159190. doi: 10.1016/j.jallcom.2021.159190
    [27] WEINBERGER C R, BOYCE B L, BATTAILE C C. Slip planes in BCC transition metals[J]. International Materials Reviews, 2013, 58(5): 296-314. doi: 10.1179/1743280412Y.0000000015
    [28] CARROLL J D, CLARK B G, BUCHHEIT T E, et al. An experimental statistical analysis of stress projection factors in BCC tantalum[J]. Materials Science and Engineering: A, 2013, 581: 108-118. doi: 10.1016/j.msea.2013.05.085
    [29] HUTCHINSON J W. Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society A: Mathematical and Physical Sciences, 1976, 348(1652): 101-127.
    [30] TERENTYEV D, XIAO X, DUBINKO A, et al. Dislocation-mediated strain hardening in tungsten: thermo-mechanical plasticity theory and experimental validation[J]. Journal of the Mechanics and Physics of Solids, 2015, 85: 1-15.
    [31] LIM H, BATTAILE C C, CARROLL J D, et al. A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity[J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 80-96. doi: 10.1016/j.jmps.2014.10.003
    [32] PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals[J]. Acta Metallurgica, 1982, 30(6): 1087-1119. doi: 10.1016/0001-6160(82)90005-0
    [33] WU Y C, YAN Y F, LV Z M. Novel prediction model for steel mechanical properties with MSVR based on MIC and complex network clustering[J]. Metals, 2021, 11(5): 747. doi: 10.3390/met11050747
    [34] KATOCH S, CHAUHAN S S, KUMAR V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. doi: 10.1007/s11042-020-10139-6
    [35] BIGGS M B. Sequential quadratic programming[M]//Nonlinear Optimization With Engineering Applications. Boston, MA: Springer US, 2008: 1-14.
    [36] QUEY R, RENVERSADE L. Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 330: 308-333. doi: 10.1016/j.cma.2017.10.029
    [37] SPETTL A, WERZ T, KRILL C E, et al. Parametric representation of 3D grain ensembles in polycrystalline microstructures[J]. Journal of Statistical Physics, 2014, 154(4): 913-928. doi: 10.1007/s10955-013-0893-7
    [38] 王姝予, 宋世杰, 陆晓翀, 等. CrMnFeCoNi高熵合金拉伸断裂的晶体塑性有限元模拟[J]. 机械工程学报, 2021, 57(22): 43-51.

    WANG Shuyu, SONG Shijie, LU Xiaochong, et al. Tensile fracture behavior of the CrMnFeCoNi high entropy alloy: a crystal plasticity finite element simulation[J]. Journal of Mechanical Engineering, 2021, 57(22): 43-51. (in Chinese)
    [39] HU P, LIU Y, ZHU Y, et al. Crystal plasticity extended models based on thermal mechanism and damage functions: application to multiscale modeling of aluminum alloy tensile behavior[J]. International Journal of Plasticity, 2016, 86: 1-25. doi: 10.1016/j.ijplas.2016.07.001
    [40] TIAN L Y, WANG G, HARRIS J S, et al. Alloying effect on the elastic properties of refractory high-entropy alloys[J]. Materials & Design, 2017, 114: 243-252.
    [41] 范婉婉, 王涛, 侯洁, 等. 基于CPRVE模型的304不锈钢极薄箔材参数标定[J]. 塑性工程学报, 2019, 26(4): 268-273.

    FAN Wanwan, WANG Tao, HOU Jie, et al. Parameters calibration of 304 stainless steel ultra-thin foil based on CPRVE model[J]. Journal of Plasticity Engineering, 2019, 26(4): 268-273. (in Chinese)
    [42] 惠文. 基于CPFEM的TA15钛合金高温塑性变形研究[D]. 合肥: 合肥工业大学, 2013.

    HUI Wen. Rsesearch on the plastic deformation of TA15 titanium alloy at high temperature using CPFEM[D]. Hefei: Hefei University of Technology, 2013. (in Chinese)
    [43] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  17
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2025-02-19
  • 刊出日期:  2025-05-01

目录

    /

    返回文章
    返回