Parameter Optimization Design and Power Response Analysis of Oscillating Buoy Wave Energy Converters With Random Loads
-
摘要: 振荡浮子式波能转换结构是波浪能发电系统的一类核心做功单元,它的研建对于我国沿海地区发展、海洋平台建设等方面的供电瓶颈技术推进上具有重大意义. 为研究其机械构型、参数设计、俘能机制,该文建立了多自由度波能转换结构耦合运动模型. 通过对粒子群等智能算法进行优化,克服了多自由度迭代规模过大以及局部最优解困境等问题,丰富了算法功能,定性及定量测算了波能转换结构在二/四自由度、线性/非线性阻尼、两场景结构尺寸参数调控下的振荡及俘能效果. 验证了多自由度、非线性阻尼等振控条件的俘能优势,同步探寻此类结构的动力学行为规律、参数优化设计及俘能机制高效路径. 引入随机载荷以优化模型精度并做进一步探索,总结了噪声差异引致结构俘能效果的作用规律. 为实际工程中波浪能转换结构的有效应用模式发展了新思路.Abstract: The oscillating buoy wave energy converter is a kind of core working unit of wave energy power generation system, and its development is of significances for breaking the power supply bottlenecks in coastal area development and offshore platform construction of in China. Then the coupled motion model for multi-DOF wave energy conversion structures was built to investigate its mechanical configuration, parameter design and energy capture mechanism. Through optimization of the intelligent algorithms such as the particle swarm algorithm, the problems of the too large multi-DOF iteration scale and the local optimal solution dilemma were overcome, the functions of the algorithm were enriched, and the oscillation and energy capture effects of the wave energy converter based on 2D/4D, linear/nonlinear damping and structure dimension parameters in 2 scenarios, were qualitatively and quantitatively evaluated. The capture energy advantages of vibration control conditions of multi-DOF and nonlinear damping, were verified, and the dynamic behavior law, the parameter optimization design and the efficient path of energy capture mechanism were explored simultaneously. Random loads were introduced to optimize the accuracy of the model, and the effects of noise differences on the energy capture were refined. The work provides a new idea for the effective application mode of wave energy conversion structure in practical engineering.
-
表 1 WEC结构尺寸及环境参数设置
Table 1. WEC structure sizes and environmental parameters
parameter value of parameter Ⅰ value of parameter Ⅱ float mass m1/kg 4 866 9 732 float bottom radius r1/m 1 2 float cylinder height H1/m 3 6 float cone height (H2-H1)/m 0.8 1.6 oscillator mass m2/kg 2 433 4 866 oscillator radius r2/m 0.5 1 oscillator heighth/m 0.5 1 sea water density ρ/(kg/m3) 1 025 1 025 gravitational acceleration g/(m/s2) 9.8 9.8 spring stiffness k0/(N/m) 80 000 80 000 spring original length l0/m 0.5 1 torsional spring stiffness kr/(N·m) 250 000 250 000 -
[1] 路晴, 史宏达. 中国波浪能技术进展与未来趋势[J]. 海岸工程, 2022, 41(1): 1-12.LU Qing, SHI Hongda. Progress and future trend of wave energy technology in China[J]. Coastal Engineering, 2022, 41(1): 1-12. (in Chinese) [2] GALLUTIA D, FARD M T, SOTO M G, et al. Recent advances in wave energy conversion systems: from wave theory to devices and control strategies[J]. Ocean Engineering, 2022, 252: 111105. doi: 10.1016/j.oceaneng.2022.111105 [3] 崔琳, 李蒙, 白旭. 海洋可再生能源技术现状与发展趋势[J]. 船舶工程, 2021, 43(10): 22-33.CUI Lin, LI Meng, BAI Xu. Current status and development trend of marine renewable energy technology[J]. Ship Engineering, 2021, 43(10): 22-33. (in Chinese) [4] WANG D L, PEI H Q, YAO J T, et al. Memory feedback signals in nonlinear coupled pitch-roll ship motions under narrow-band stochastic excitations[J]. Mechanical Systems and Signal Processing, 2023, 192: 110220. doi: 10.1016/j.ymssp.2023.110220 [5] 蒋志杰. 单、双自由度直驱式波浪发电系统研究与控制[D]. 广州: 华南理工大学, 2022.JIANG Zhijie. Research and control of single double DOF direct-drive wave generation system[D]. Guangzhou: South China University of Technology, 2022. (in Chinese) [6] HENRIQUES J C C, GOMES R P F, GATO L M C, et al. Testing and control of a power take-off system for an oscillating-water-column wave energy converter[J]. Renewable Energy, 2016, 85: 714-724. doi: 10.1016/j.renene.2015.07.015 [7] LI H F, SUN X W, ZHOU H. Wave energy: history, implementations, environmental impacts and economics[C]// 2 nd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2022). USA: SPIE, 2022. [8] JIANG Y C, PENG Y H, SUN Y, et al. Design and testing of a mechanical power take-off system for rolling-type wave energy converter[J]. International Journal of Precision Engineering and Manufacturing: Green Technology, 2021, 8(5): 1487-1499. doi: 10.1007/s40684-020-00253-z [9] THOMSON R C, CHICK J P, HARRISON G P. An LCA of the Pelamis wave energy converter[J]. International Journal of Life Cycle Assessment, 2019, 24(1): 51-63. doi: 10.1007/s11367-018-1504-2 [10] 莫丽平, 卜育才. 波浪能发电装置的鹰式吸波浮体研究[J]. 上海船舶运输科学研究所学报, 2023, 46(6): 15-21.MO Liping, BU Yucai. Sharp eagle wave absorbing floats of wave power generation device[J]. Journal of Shanghai Ship and Shipping Research Institute, 2023, 46(6): 15-21. (in Chinese) [11] 吴明东, 盛松伟, 张亚群, 等. 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9(1): 42-47.WU Mingdong, SHENG Songwei, ZHANG Yaqun, et al. Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Energy, 2021, 9(1): 42-47. (in Chinese) [12] 刘吉臻, 马利飞, 王庆华, 等. 海上风电支撑我国能源转型发展的思考[J]. 中国工程科学, 2021, 23(1): 149-159.LIU Jizhen, MA Lifei, WANG Qinghua, et al. Offshore wind power supports China's energy transition[J]. Strategic Study of CAE, 2021, 23(1): 149-159. (in Chinese) [13] 贺彤彤. 锚泊浮台波浪能供电装置设计优化与水动力性能研究[D]. 济南: 山东大学, 2019.HE Tongtong. Design optimization and hydrodynamic performance study of wave energy power supply device for mooring platform[D]. Jinan: Shandong University, 2019. (in Chinese) [14] 李永国, 覃灿, 郑丁健, 等. 点吸式直驱波浪能转换装置优化方法综述[J]. 世界科技研究与发展, 2023, 45(3): 349-364.LI Yongguo, QIN Can, ZHENG Dingjian, et al. Review on optimization methods of point absorption direct drive wave energy generator[J]. World Sci-Tech R&D, 2023, 45(3): 349-364. (in Chinese) [15] LIANG S G, LU K, WANG H M. Research on laboratory test method of wave energy converter wave-wire conversion ratio in irregular waves[J]. Energies, 2023, 16(2): 1001. doi: 10.3390/en16021001 [16] SHENG W A, LEWIS A. Power takeoff optimization to maximize wave energy conversions for oscillating water column devices[J]. IEEE Journal of Oceanic Engineering, 2018, 43(1): 36-47. doi: 10.1109/JOE.2016.2644144 [17] CAI Y Q, HUO Y Q, SHI X Y, et al. Numerical and experimental research on a resonance-based wave energy converter[J]. Energy Conversion and Management, 2022, 269: 116152. doi: 10.1016/j.enconman.2022.116152 [18] SHI X L, LIANG B C, DU S T, et al. Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation[J]. Renewable Energy, 2022, 199: 1381-1407. doi: 10.1016/j.renene.2022.09.094 [19] 曾维鸿, 傅卓佳, 汤卓超. 超水槽动力特性数值模拟的新型局部无网格配点法[J]. 应用数学和力学, 2022, 43(4): 392-400. doi: 10.21656/1000-0887.420246ZENG Weihong, FU Zhuojia, TANG Zhuochao. A novel localized meshless collocation method for numerical simulation of flume dynamic characteristics[J]. Applied Mathematics and Mechanics, 2022, 43(4): 392-400. (in Chinese) doi: 10.21656/1000-0887.420246 [20] 刘高, 陈上有, 刘天成, 等. 跨海特大型桥梁风-浪耦合作用的随机振动分析[J]. 应用数学和力学, 2017, 38(1): 75-89. doi: 10.21656/1000-0887.370553LIU Gao, CHEN Shangyou, LIU Tiancheng, et al. An analysis method for wind-wave coupling induced random vibration of sea-crossing super-large bridges[J]. Applied Mathematics and Mechanics, 2017, 38(1): 75-89. (in Chinese) doi: 10.21656/1000-0887.370553 [21] LAN J, WU Y J. First-exit problem of MDOF strongly nonlinear oscillators under wide-band random excitations without internal resonances[J]. Acta Mechanica, 2017, 228(1): 175-186. doi: 10.1007/s00707-016-1713-3 [22] WU Y J. Dynamical reliability of internally resonant or non-resonant strongly nonlinear system under random excitations[J]. Mechanical Systems and Signal Processing, 2019, 118: 767-780. doi: 10.1016/j.ymssp.2018.09.015 [23] 顾兴远, 牛玉博, 郑阳, 等. 新型双体波浪能转换装置多自由度耦合水动力特性研究[J]. 振动与冲击, 2024, 43(4): 207-214.GU Xingyuan, NIU Yubo, ZHENG Yang, et al. A study on multi-degree-of-freedom coupled hydrodynamic characteristics of a novel two-body wave energy converter[J]. Journal of Vibration and Shock, 2024, 43(4): 207-214. (in Chinese) [24] 孙诣博, 魏莎, 丁虎, 等. 基于路径积分法的输液管道随机动态响应分析[J]. 力学学报, 2023, 55(6): 1371-1381.SUN Yibo, WEI Sha, DING Hu, et al. Stochastic dynamic response analysis of pipe conveying fluid based on the path integral method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(6): 1371-1381. (in Chinese) [25] CHEN J B, KONG F, PENG Y B. A stochastic harmonic function representation for non-stationary stochastic processes[J]. Mechanical Systems and Signal Processing, 2017, 96: 31-44. doi: 10.1016/j.ymssp.2017.03.048 [26] BITTNER M, BROGGI M, BEER M. Efficient reliability analysis of stochastic dynamic first-passage problems by probability density evolution analysis with subset supported point selection[J]. Engineering Structures, 2024, 312: 118210. doi: 10.1016/j.engstruct.2024.118210 [27] 张万超, 周亚辉, 周效国. 振荡浮子式波能转换装置动力输出系统特性研究[J]. 振动与冲击, 2020, 39(11): 38-44.ZHANG Wanchao, ZHOU Yahui, ZHOU Xiaoguo. Power take-off mechanism analysis of oscillating-buoy wave energy converter[J]. Journal of Vibration and Shock, 2020, 39(11): 38-44. (in Chinese) [28] 王德莉, 李霁, 杨雯, 等. 振荡浮子式波能装置的功率计算分析及参数设计[J]. 哈尔滨工程大学学报, 2024, 45(2): 406-414.WANG Deli, LI Ji, YANG Wen, et al. Power calculation analysis and parameter design of an oscillating float wave energy device[J]. Journal of Harbin Engineering University, 2024, 45(2): 406-414. (in Chinese)