留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢-环氧-钢三明治结构胶层缺陷的导波检测方法研究

王喜顺 郭昊 朱清锋 杜月浩 苗鸿臣

王喜顺, 郭昊, 朱清锋, 杜月浩, 苗鸿臣. 钢-环氧-钢三明治结构胶层缺陷的导波检测方法研究[J]. 应用数学和力学, 2024, 45(11): 1416-1427. doi: 10.21656/1000-0887.450193
引用本文: 王喜顺, 郭昊, 朱清锋, 杜月浩, 苗鸿臣. 钢-环氧-钢三明治结构胶层缺陷的导波检测方法研究[J]. 应用数学和力学, 2024, 45(11): 1416-1427. doi: 10.21656/1000-0887.450193
WANG Xishun, GUO Hao, ZHU Qingfeng, DU Yuehao, MIAO Hongchen. A Guided-Wave-Based Method for Detecting Defects in the Adhesive Layer of the Steel-Epoxy-Steel Sandwich Structure[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1416-1427. doi: 10.21656/1000-0887.450193
Citation: WANG Xishun, GUO Hao, ZHU Qingfeng, DU Yuehao, MIAO Hongchen. A Guided-Wave-Based Method for Detecting Defects in the Adhesive Layer of the Steel-Epoxy-Steel Sandwich Structure[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1416-1427. doi: 10.21656/1000-0887.450193

钢-环氧-钢三明治结构胶层缺陷的导波检测方法研究

doi: 10.21656/1000-0887.450193
基金项目: 

国家自然科学基金 12172310

中国科协青年人才托举工程项目 YESS20210342

中央高校基本科研业务费 2682024CG014

四川省自然科学基金杰出青年科学基金 25NSFJQ0182

详细信息
    作者简介:

    王喜顺(2001—),男,硕士生(E-mail: 1465664194@qq.com)

    通讯作者:

    苗鸿臣(1989—),男,副教授,博士生导师(通讯作者. E-mail: miaohongchen@swjtu.edu.cn)

  • 中图分类号: O343.3

A Guided-Wave-Based Method for Detecting Defects in the Adhesive Layer of the Steel-Epoxy-Steel Sandwich Structure

  • 摘要: 钢质环氧套筒广泛应用于油气管道的修复. 套筒与管道之间环氧胶层的完整性直接决定了修复质量. 由于套筒、环氧胶层和管道一起构成了特殊的三明治结构,传统的无损检测方法难以实现胶层缺陷的有效识别,迫切需要发展新的无损检测方法. 该文对钢-环氧-钢三明治结构胶层缺陷的导波检测方法展开了研究. 首先通过半解析有限元方法,计算了三明治结构中导波的频散曲线,通过频散特征、波形结构和衰减特性筛选出了可用于胶层缺陷检测的LS1波. 接着设计了可用于激励LS1波的压电换能器,并通过数值模拟和实验验证了换能器的有效性. 然后,通过数值模拟和实验研究了LS1波与胶层空腔缺陷的作用规律,发现缺陷长度尺寸在4倍波长以内时,LS1波反射波的幅值随缺陷长度变化近似线性变化. 在此基础上提出了一种信号处理的方法,当缺陷尺寸不小于2倍波长时,该方法可以有效辨识出缺陷反射信号.
  • 图  1  环氧套筒和环氧树脂胶层缺陷示意图

    Figure  1.  Schematic diagram of steel sleeve and cavity defects in epoxy

    图  2  三明治结构示意图和结构中导波的群速度频散曲线

    Figure  2.  Schematic diagram of the sandwich structure and group velocity dispersion curves of guided waves in the sandwich structure

    图  3  80 kHz波形结构

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Waveform structures at 80 kHz

    图  4  SSH0波和LS1波在70~120 kHz范围内的衰减曲线

    Figure  4.  The attenuation curves of SSH0 and LS1 waves within the frequency range of 70~120 kHz

    图  5  激励方式和LS1波压电换能器示意图

    Figure  5.  Schematic diagram of the excitation method and the piezoelectric transducer for exciting LS1 waves

    图  6  有限元模型设置示意图

    Figure  6.  The schematic diagram of the finite element simulation model

    图  7  观测点1和观测点2沿着x方向的位移u的时间历程曲线及其小波变换结果

    Figure  7.  The time history curves of response points 1 and 2 displacements along the x direction and the CWT results

    图  8  激励导波模态的波形结构和机械能流

    Figure  8.  The wave structure and the mechanical energy flow of the excited LS1 wave

    图  9  有缺陷与无缺陷模型的反射信号对比

    Figure  9.  Comparison of reflected signals between defective and non defective models

    图  10  LS1波与不同长度的缺陷作用的结果

    Figure  10.  The results of LS1 wave interaction with defects of different lengths

    图  11  导波实验系统

    Figure  11.  The guided wave experimental system

    图  12  换能器激励LS1波的实验结果

    Figure  12.  Experimental results of the LS1 wave excited by the proposed transducer

    图  13  LS1波检测尺寸为5 mm×7 mm×90 mm胶层缺陷

    Figure  13.  The performance of LS1 wave on defect (5 mm×7 mm×90 mm) detection

    图  14  缺陷信号辨识流程图

    Figure  14.  The flowchart of signal processing

    图  15  图 13(a)的信号经过图 14所示的方法处理得到的信号

    Figure  15.  The obtained signals of fig. 13(a) after processing with the method shown in fig. 14

    图  16  LS1波识别不同尺寸的胶层空腔缺陷

    Figure  16.  The performance of LS1 waves for identitying defects with different sizes

    图  17  LS1波反射波幅值随着胶层空腔缺陷长度改变的变化关系

    Figure  17.  The relationship between the amplitude of LS1 wave reflection signals from defects of different lengths and the lengths of defects

    表  1  三明治结构的材料参数

    Table  1.   Material parameters of the sandwich structure

    material density ρ/(kg/m3) elastic modulus E/GPa Poisson’s ratio ν C11/GPa C66/GPa
    steel 7 850 210 0.33 310.8 78.86
    epoxy resin 1 186 4 0.4 8.56×(1+i0.03) 1.43×(1+i0.03)
    下载: 导出CSV

    表  2  PZT-5H的材料性能

    Table  2.   The material properties of the PZT-5H

    density ρ/(kg·m-3) elastic compliance SE/(10-12·Pa-1) relative dielectric constant εT piezoelectric constant d/(pC·N-1)
    S11E S33E S12E S13E S44E S66E ε11T ε22T ε33T d31=d32 d33 d24=d15
    7 500 16.5 20.7 -4.78 -8.45 43.6 42.6 3 130 3 130 3 400 -274 593 741
    下载: 导出CSV
  • [1] 雷宏峰, 霍晓彤, 常青, 等. 钢质环氧套筒修复技术综述[J]. 中国石油和化工标准与质量, 2021, 41(22): 144-145.

    LEI Hongfeng, HUO Xiaotong, CHANG Qing, et al. Overview of repair technology for steel epoxy sleeves[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(22): 144-145. (in Chinese)
    [2] AMARA M, BOULEDROUA O, MELIANI M H, et al. Effect of corrosion damage on a pipeline burst pressure and repairing methods[J]. Archive of Applied Mechanics, 2019, 89(5): 939-951. doi: 10.1007/s00419-019-01518-z
    [3] CHICHE A, DOLLHOFER J, CRETON C. Cavity growth in soft adhesives[J]. The European Physical Journal E: Soft Matter, 2005, 17(4): 389-401. doi: 10.1140/epje/i2004-10148-3
    [4] MEHDIKHANI M, GORBATIKH L, VERPOEST I, et al. Voids in fiber-reinforced polymer composites: a review on their formation, characteristics, and effects on mechanical performance[J]. Journal of Composite Materials, 2019, 53(12): 1579-1669. doi: 10.1177/0021998318772152
    [5] SCALEA F L D, RIZZO P, MARZANI A. Propagation of ultrasonic guided waves in lap-shear adhesive joints: case of incident a0 Lamb wave[J]. The Journal of the Acoustical Society of America, 2004, 115(1): 146-156. doi: 10.1121/1.1630999
    [6] LIU M, CHEN S, WONG Z Z, et al. In situ disbond detection in adhesive bonded multi-layer metallic joint using time-of-flight variation of guided wave[J]. Ultrasonics, 2020, 102: 106062. doi: 10.1016/j.ultras.2020.106062
    [7] BETTA G, FERRIGNO L, LARACCA M, et al. An experimental comparison of multi-frequency and chirp excitations for eddy current testing on thin defects[J]. Measurement, 2015, 63: 207-220. doi: 10.1016/j.measurement.2014.12.015
    [8] YUAN X A, LI W, CHEN G, et al. Inspection of both inner and outer cracks in aluminum tubes using double frequency circumferential current field testing method[J]. Mechanical Systems and Signal Processing, 2019, 127: 16-34. doi: 10.1016/j.ymssp.2019.02.054
    [9] SHI Y, ZHANG C, LI R, et al. Theory and application of magnetic flux leakage pipeline detection[J]. Sensors, 2015, 15(12): 31036-31055. doi: 10.3390/s151229845
    [10] EGE Y, CORAMIK M. A new measurement system using magnetic flux leakage method in pipeline inspection[J]. Measurement, 2018, 123: 163-174. doi: 10.1016/j.measurement.2018.03.064
    [11] ROSE J L. Ultrasonic Guided Waves in Solid Media[M]. New York: Cambridge University Press, 2014.
    [12] GOGLIO L, ROSSETTO M. Ultrasonic testing of adhesive bonds of thin metal sheets[J]. NDT&E International, 1999, 32(6): 323-331.
    [13] RAMALHO G M F, LOPES A M, SILVA L F M. Structural health monitoring of adhesive joints using lamb waves: a review[J]. Structural Control and Health Monitoring, 2022, 29(1): e2849.
    [14] SHELKE A, KUNDU T, AMJAD U, et al. Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(3): 567-577. doi: 10.1109/TUFFC.2011.1839
    [15] LI B, QIANG L, LU T, et al. A Stoneley wave method to detect interlaminar damage of metal layer composite pipe[J]. Frontiers of Mechanical Engineering, 2015, 10(1): 89-94. doi: 10.1007/s11465-015-0323-4
    [16] GUO H, LI R, SUN L, et al. Inspecting epoxy layer defects in steel-epoxy-steel sandwich structures using guided waves[J]. Measurement, 2024, 231: 114551. doi: 10.1016/j.measurement.2024.114551
    [17] WANG K, LIU M, SU Z, et al. Mode-mismatching enhanced disbond detection using material nonlinearity in guided waves at low frequency[J]. Journal of Sound and Vibration, 2021, 490: 115733. doi: 10.1016/j.jsv.2020.115733
    [18] HAYASHI T, SONG W J, ROSE J L. Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example[J]. Ultrasonics, 2003, 41(3): 175-183. doi: 10.1016/S0041-624X(03)00097-0
    [19] YU X, ZUO P, XIAO J, et al. Detection of damage in welded joints using high order feature guided ultrasonic waves[J]. Mechanical Systems and Signal Processing, 2019, 126: 176-192. doi: 10.1016/j.ymssp.2019.02.026
    [20] CASTAINGS M, LOWE M. Finite element model for waves guided along solid systems of arbitrary section coupled to infinite solid media[J]. The Journal of the Acoustical Society of America, 2008, 123(2): 696-708. doi: 10.1121/1.2821973
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  46
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-08-14
  • 刊出日期:  2024-11-01

目录

    /

    返回文章
    返回