留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负刚度扭转超结构力学性能研究

王钦泽 韩宾 郑培远 刘志鹏 张琦

王钦泽, 韩宾, 郑培远, 刘志鹏, 张琦. 负刚度扭转超结构力学性能研究[J]. 应用数学和力学, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082
引用本文: 王钦泽, 韩宾, 郑培远, 刘志鹏, 张琦. 负刚度扭转超结构力学性能研究[J]. 应用数学和力学, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082
WANG Qinze, HAN Bin, ZHENG Peiyuan, LIU Zhipeng, ZHANG Qi. Research on Mechanical Properties of Negative Stiffness Torsion Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082
Citation: WANG Qinze, HAN Bin, ZHENG Peiyuan, LIU Zhipeng, ZHANG Qi. Research on Mechanical Properties of Negative Stiffness Torsion Metastructures[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1082-1095. doi: 10.21656/1000-0887.450082

负刚度扭转超结构力学性能研究

doi: 10.21656/1000-0887.450082
基金项目: 

国家自然科学基金(52250287)

详细信息
    作者简介:

    王钦泽(2000—),男,硕士生(E-mail: a1309148215@stu.xjtu.edu.cn);韩宾(1986—),男,副教授,博士(通讯作者. E-mail: hanbinghost@mail.xjtu.edu.cn).

    通讯作者:

    韩宾(1986—),男,副教授,博士(通讯作者. E-mail: hanbinghost@mail.xjtu.edu.cn).

  • 中图分类号: O3

Research on Mechanical Properties of Negative Stiffness Torsion Metastructures

Funds: 

The National Science Foundation of China(52250287)

  • 摘要: 通过屈曲变形实现非损伤耗散能量的负刚度超结构,为可重复使用的缓冲防护器件提供了新的设计思路,但其耗散能力较弱、难以过载保护的缺点限制了实际应用.为增强耗能性能及最大允许变形量,将负刚度铰接梁与具有压扭效应的斜杆串联组合,设计了一种负刚度扭转超结构,通过引入扭转变形缓解了过载导致的应力集中.建立了负刚度扭转单元模型,通过刚度匹配设计实现了对力学性能的调控,使负刚度扭转超结构表现出突跳行为,产生加卸载曲线不重合的迟滞现象,从而极大地提高了能量耗散能力.通过结构参数及刚度关系的优化设计,负刚度扭转超结构的最大等效压缩应变可达71%,相同层数下,能量耗散能力可以达到传统屈曲梁超结构的两倍.
  • [2]LI X Y, WANG J X, CHAI Y J, et al. A novel frog-like meta-structure with linkage mechanism for low-frequency vibration isolation[J].Journal of Physics D: Applied Physics,2024,57: 135304.
    DARWISH Y, ELGAWADY M A. Numerical and experimental investigation of negative stiffness beams and honeycomb structures[J].Engineering Structures,2024,301: 117163.
    [3]杨航, 马力. 多材料点阵结构的热可编程力学行为[J]. 应用数学和力学, 2022,43(5): 534-552.(YANG Hang, MA Li. Multimaterial lattice structures with thermally programmable mechanical behaviors[J].Applied Mathematics and Mechanics,2022,43(5): 534-522.(in Chinese))
    [4]王竞哲, 陈保才, 朱绍伟, 等. 圆锥形负刚度超材料吸能性能研究[J]. 应用数学和力学, 2023,44(10): 1172-1179.(WANG Jingzhe, CHEN Baocai, ZHU Shaowei, et al. Study on energy absorption performances of conical negative stiffness metamaterials[J].Applied Mathematics and Mechanics,2023,44(10): 1172-1179.(in Chinese))
    [5]VALENCIA C, RESTREPO D, MANKAME N D, et al. Computational characterization of the wave propagation behavior of multi-stable periodic cellular materials[J].Extreme Mechanics Letters,2019,33(C): 100565.
    [6]GOLDSBERRY B M, HABERMAN M R. Negative stiffness honeycombs as tunable elastic metamaterials[J].Journal of Applied Physics,2018,123(9): 091711.
    [7]FRAZIER M J. Multi-stable acoustic metamaterials with re-configurable mass distribution[J].Journal of Applied Physics,2022,131(16): 165105.
    [8]HU N, LI B, BAI R Y, et al. A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots[J].Research,2023,6: 0116.
    [9]MUNGEKAR M, MA L X, YAN W Z, et al. Design of bistable soft deployable structures via a kirigami-inspired planar fabrication approach[J].Advanced Materials Technologies,2023,8(16): 00088.
    [10]CHI Y D, HONG Y Y, ZHAO Y, et al. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer[J].Science Advances,2022,8(46): eadd3788.
    [11]WANG J, ZHAO T H, FAN Y Y, et al. Leveraging bioinspired structural constraints for tunable and programmable snapping dynamics in high-speed soft actuators[J].Advanced Functional Materials,2022,33(2): 09798.
    [12]ZHOU S X, CAO J Y, ERTURK A, et al. Enhanced broadband piezoelectric energy harvesting using rotatable magnets[J].Applied Physics Letters,2013,102(17): 173901.
    [13]ZHOU S X, CAO J Y, INMAN D J, et al. Broadband tristable energy harvester: modeling and experiment verification[J].Applied Energy,2014,133: 33-39.
    [14]BARTON DAW, BURROW S G, CLARE L R. Energy harvesting from vibrations with a nonlinear oscillator[J].Journal of Vibration and Acoustics,2010,132(2): 427-436.
    [15]SHAN S C, KANG S H, RANEY J R, et al. Multistable architected materials for trapping elastic strain energy[J].Advanced Materials,2015,27(29): 4296-4301.
    [16]FRENZEL T, FINDISEN C, KADIC M, et al. Tailoredbuckling microlattices as reusable light-weight shock absorbers[J].Advanced Materials,2016,28(28): 5865-5870.
    [17]WANG B, TAN X J, ZHU S W, et al. Cushion performance of cylindrical negative stiffness structures: analysis and optimization[J].Composite Structures,2019,227: 111276.
    [18]ZHANG Y, TICHEM M, VAN KEULEN F. A novel design of multi-stable metastructures for energy dissipation[J].Materials Design,2021,212: 110234.
    [19]TAN X J, WANG L C, ZHU S W, et al. A general strategy for performance enhancement of negative stiffness mechanical metamaterials[J].European Journal of Mechanics A: Solids,2022,96: 104702.
    [20]MENG Z Q, OUYANG Z, CHEN C Q. Multi-step metamaterials with two phases of elastic and plastic deformation[J].Composite Structures,2021,271: 114152.
    [21]SHI J H, MOFATTEH H, MIRABOLGHASEMI A, et al. Programmable multistable perforated shellular[J].Advanced Materials,2021,33(42): 210243.
    [22]LIU S H, AZAD A, BURGUENO R. Architected materials for tailorable shear behavior with energy dissipation[J].Extreme Mechanics Letters,2019,28: 1-7.
    [23]CHEN S, WANG B, ZHU S W, et al. A novel composite negative stiffness structure for recoverable trapping energy[J].Composites Part A,2020,129: 105697.
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  28
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 修回日期:  2024-05-18
  • 网络出版日期:  2024-09-06

目录

    /

    返回文章
    返回