留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物热-力-电生理耦合学

孙学超 刘少宝 林敏 徐峰 卢天健

孙学超, 刘少宝, 林敏, 徐峰, 卢天健. 生物热-力-电生理耦合学[J]. 应用数学和力学, 2024, 45(6): 651-669. doi: 10.21656/1000-0887.450079
引用本文: 孙学超, 刘少宝, 林敏, 徐峰, 卢天健. 生物热-力-电生理耦合学[J]. 应用数学和力学, 2024, 45(6): 651-669. doi: 10.21656/1000-0887.450079
SUN Xuechao, LIU Shaobao, LIN Min, XU Feng, LU Tianjian. The Bio-Thermo-Mechano-Electrophysiology[J]. Applied Mathematics and Mechanics, 2024, 45(6): 651-669. doi: 10.21656/1000-0887.450079
Citation: SUN Xuechao, LIU Shaobao, LIN Min, XU Feng, LU Tianjian. The Bio-Thermo-Mechano-Electrophysiology[J]. Applied Mathematics and Mechanics, 2024, 45(6): 651-669. doi: 10.21656/1000-0887.450079

生物热-力-电生理耦合学

doi: 10.21656/1000-0887.450079
(我刊编委刘少宝、林敏、卢天健来稿)
基金项目: 

国家自然科学基金(重点项目) 12032010

江苏省研究生科研与实践创新计划项目 KYCX23_0351

详细信息
    作者简介:

    孙学超(1996—),男,博士生(E-mail: xcsun@nuaa.edu.cn)

    通讯作者:

    卢天健(1964—),男,教授,博士,博士生导师(通讯作者. E-mail: tjlu@nuaa.edu.cn)

  • 中图分类号: O34

The Bio-Thermo-Mechano-Electrophysiology

(Contributed by LIU Shaobao, LIN Min, LU Tianjian, M.AMM Editorial Board)
  • 摘要:

    由于温度、机械力、生化等多种影响因子对机体的生物学行为产生重要影响,生物体在多物理场下保持动态平衡是其正常活动的关键条件.研究生物热-力-电生理耦合行为,旨在交叉融合多个学科,建立生物传热学、生物力学、神经生理学等数理模型,系统开展跨尺度热-力-电生理耦合行为研究,并将成果应用于生物医学领域,对理解生物体的正常功能以及重大疾病的病理机制和有效诊治具有重要意义.其核心思想在于发现关键科学问题、识别交叉学科,并集成学科优势,推动理论创新和技术创新,为生命医学领域带来新突破.该文以剑桥大学和DNA双螺旋结构的发现为背景,以大脑、皮肤、牙齿等为例,介绍生物热-力-电生理耦合学这一新兴交叉学科的起源和内涵.

    1)  (我刊编委刘少宝、林敏、卢天健来稿)
  • 图  1  1953年在《自然》杂志发表的《Molecular Structure of Nucleic Acids》一文揭示了DNA的双螺旋结构[6]

    Figure  1.  The double helix structure of DNA revealed in the article "Molecular Structure of Nucleic Acids" published in Nature in 1953[6]

    图  2  剑桥市Eagle老酒吧及其门外纪念DNA结构发现之地的浅蓝底色铭牌

    Figure  2.  The light blue plaque outside the Eagle Pub in Cambridge commemorating the place where the DNA structure was discovered

    图  3  皮肤烫伤起泡及皮肤层级结构示意图:皮肤的表皮最薄但最硬,其弹性模量(~100 MPa)是真皮的10倍,故很容易在热刺激下产生热不匹配现象,进而起泡

    Figure  3.  Schematic diagram of skin blistering and skin hierarchy: the epidermis of the skin is the thinnest but hardest, and its Young's modulus (~100 MPa) is 10 times that of the dermis, so it is easy to produce thermal mismatch under thermal stimulation, and then blistering

    图  4  生物组织的非均质、多组分结构[10]

    Figure  4.  Heterogeneous, multicomponent structures of biological tissues[10]

    图  5  皮肤热疼痛统一模型示意图[44]

    Figure  5.  Schematic diagram of the unified model of skin heat pain[44]

    图  6  皮肤热-力-电生理耦合行为[44]

    Figure  6.  Skin thermo-mechano-electrophysiological coupling behavior[44]

    图  7  生物打印技术典型应用

    Figure  7.  Typical applications of the bio-printing technology

    图  8  牙齿冷/热疼痛力学机理具有显著差异[9]

    Figure  8.  The mechanical mechanisms of cold/heat pains with significant differences[9]

    图  9  输尿管壁结构及流固耦合作用下结石-输尿管力学模型[48]

    Figure  9.  The ureteral wall structure and the calculus-ureter mechanical model under fluid-solid coupling[48]

    图  10  脑组织快速压缩-松弛实验

    Figure  10.  The rapid compression-relaxation test of brain tissue

    图  11  黏弹性水凝胶用于脑外伤治疗,加速脑外伤修复[53]

    Figure  11.  Viscoelastic hydrogels used in the treatment of brain injury to accelerate the repair[53]

    图  12  生物热-力-电生理耦合学发展进程

    Figure  12.  Development of biothermo-mechano-electrophysiological coupling

    图  13  理-工-医多学科交叉研究

    Figure  13.  Multidisciplinary study of science, engineering and medicine

  • [1] WATSON J D. The Double Helix[M]. Hachette, 2012.
    [2] SCHRÖDINGER E. What is Life? The Physical Aspect of the Living Cell and Mind[M]. Cambridge: Cambridge University Press, 1944.
    [3] CRICK F H C. The double helix: a personal view[J]. Nature, 1974, 248(5451): 766-769. doi: 10.1038/248766a0
    [4] HALLORAN S M. The birth of molecular biology: an essay in the rhetorical criticism of scientific discourse[J]. Rhetoric Review, 1984, 3(1): 70-83. doi: 10.1080/07350198409359083
    [5] WILLIAMS G. Unravelling the Double Helix: the Lost Heroes of DNA[M]. Hachette, 2019.
    [6] WATSON J D, CRICK F H C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid[J]. Nature, 1953, 171(4356): 737-738. doi: 10.1038/171737a0
    [7] CHEN C, LU T J, FLECK N A. Effect of imperfections on the yielding of two-dimensional foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235-2272. doi: 10.1016/S0022-5096(99)00030-7
    [8] XU F, LU T J. Introduction to Skin Biothermomechanics and Thermal Pain[M]. New York: Science Press, 2011.
    [9] 卢天健, 林敏, 徐峰. 牙齿的热-力-电生理耦合行为[M]. 北京: 科学出版社, 2015.

    LU Tianjian, LIN Min, XU Feng. Thermo-Mechano-Electrophysiological Coupling Behaviors of Teeth[M]. Beijing: Science Press, 2015. (in Chinese)
    [10] KELLEY D H, THOMAS J H. Cerebrospinal fluid flow[J]. Annual Review of Fluid Mechanics, 2023, 55: 237-264. doi: 10.1146/annurev-fluid-120720-011638
    [11] WEINBAUM S, JIJI L M, LEMONS D E. Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer, part Ⅰ: anatomical foundation and model conceptualization[J]. Journal of Biomechanical Engineering, 1984, 106(4): 321-330. doi: 10.1115/1.3138501
    [12] LEMONS D E, CHIEN S, CRAWSHAW L I, et al. Significance of vessel size and type in vascular heat transfer[J]. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 1987, 253(1): R128-R135. doi: 10.1152/ajpregu.1987.253.1.R128
    [13] CREZEE J, LAGENDIJK J J. Temperature uniformity during hyperthermia: the impact of large vessels[J]. Physics in Medicine and Biology, 1992, 37: 1321-1337. doi: 10.1088/0031-9155/37/6/009
    [14] CHATO J C. Heat transfer to blood vessels[J]. Journal of Biomechanical Engineering, 1980, 102(2): 110-118. doi: 10.1115/1.3138205
    [15] RICHARDSON A W, IMIG C G, FEUCHT B L, et al. Relationship between deep tissue temperature and blood flow during electromagnetic irradiation[J]. Archives of Physical Medicine and Rehabilitation, 1950, 31: 19-25.
    [16] 刘静, 王存诚, 任泽霈, 等. 生物活体组织温度振荡效应的理论与实验[J]. 清华大学学报(自然科学版), 1997, 37(2): 91-95. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB702.021.htm

    LIU Jing, WANG Cuncheng, REN Zepei, et al. Theoretical and experimental study on temperature oscillation effects in living biological tissues[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(2): 91-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB702.021.htm
    [17] BANERJEE A, OGALE A A, DAS C, et al. Temperature distribution in different materials due to short pulse laser irradiation[J]. Heat Transfer Engineering, 2005, 26(8): 41-49. doi: 10.1080/01457630591003754
    [18] JOSEPH F. Face aux Objections Contre sa Théorie de la Chaleur: Lettres Inédites, 1808-1816[M]. Bibliothèque Nationale, 1980.
    [19] OZISIK M N, TZOU D Y. On the wave theory in heat conduction[J]. Journal of Heat Transfer, 1994, 116(4): 526-535.
    [20] TZOU D Y. Macro- to Microscale Heat Transfer: the Lagging Behavior[M]. John Wiley & Sons, 2014.
    [21] TZOU D Y. Experimental support for the lagging behavior in heat propagation[J]. Journal of Thermophysics and Heat Transfer, 1995, 9(4): 686-693. doi: 10.2514/3.725
    [22] WU J Z, DONG R G, RAKHEJA S, et al. Simulation of mechanical responses of fingertip to dynamic loading[J]. Medical Engineering & Physics, 2002, 24(4): 253-264.
    [23] WU J Z, DONG R G, SMUTZ W P, et al. Nonlinear and viscoelastic characteristics of skin under compression: experiment and analysis[J]. Bio-Medical Materials and Engineering, 2003, 13(4): 373-385.
    [24] WU J Z, CUTLIP R G, WELCOME D, et al. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests[J]. Bio-Medical Materials and Engineering, 2006, 16(1): 53-66.
    [25] SHERGOLD O A, FLECK N A. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin[J]. Journal of Biomechanical Engineering, 2005, 127(5): 838-848. doi: 10.1115/1.1992528
    [26] SHERGOLD O A, FLECK N A, RADFORD D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates[J]. International Journal of Impact Engineering, 2006, 32(9): 1384-1402. doi: 10.1016/j.ijimpeng.2004.11.010
    [27] FLORY P J, GARRETT R R. Phase transitions in collagen and gelatin systems1[J]. Journal of the American Chemical Society, 1958, 80(18): 4836-4845. doi: 10.1021/ja01551a020
    [28] ARNOCZKY S P, AKSAN A. Thermal modification of connective tissues: basic science considerations and clinical implications[J]. Journal of the American Academy of Orthopaedic Surgeons, 2000, 8(5): 305-313. doi: 10.5435/00124635-200009000-00004
    [29] HUMPHREY J D. Continuum thermomechanics and the clinical treatment of disease and injury[J]. Applied Mechanics Review, 2003, 56(2): 231-260. doi: 10.1115/1.1536177
    [30] DAVIS E D, DOSS D J, HUMPHREY J D, et al. Effects of heat-induced damage on the radial component of thermal diffusivity of bovine aorta[J]. Journal of Biomechanical Engineering, 2000, 122(3): 283-286. doi: 10.1115/1.429658
    [31] CHEN S S, WRIGHT N T, HUMPHREY J D. Phenomenological evolution equations for heat-induced shrinkage of acollagenous tissue[J]. IEEE Transactions on Biomedical Engineering, 1998, 45(10): 1234-1240. doi: 10.1109/10.720201
    [32] DIAZ-VALDES S H, LAVERNIA E J, WONG B. Mechanical behavior of cartilage during laser irradiation[C]//Laser-Tissue Interaction : Photochemical, Photothermal, and Photomechanical. San Jose, CA, United States, 2001, 4257: 192-197.
    [33] CHAE Y S, AGUILAR G, LAVERNIA E J, et al. Characterization of temperature dependent mechanical behavior of cartilage[J]. Lasers in Surgery and Medicine, 2003, 32(4): 271-278. doi: 10.1002/lsm.10167
    [34] AKSAN A, MCGRATH J J. Thermomechanical analysis of soft-tissue thermotherapy[J]. Journal of Biomechanical Engineering, 2003, 125(5): 700-708. doi: 10.1115/1.1614816
    [35] AGAH R, GANDJBAKHCHE A H, MOTAMEDI M, et al. Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration[J]. IEEE Transactions on Biomedical Engineering, 1996, 43(8): 839-846. doi: 10.1109/10.508546
    [36] SCHWARZMAIER H J, YAROSLAVSKY A N, TERENJI A, et al. Changes in the optical properties of laser-coagulated and thermally coagulated bovine myocardium[C]//Laser-Tissue Interaction . San Jose, CA, United States, 1998, 3254: 361-365.
    [37] JUN J H, HARRIS J L, HUMPHREY J D, et al. Effect of thermal damage and biaxial loading on the optical properties of a collagenous tissue[J]. Journal of Biomechanical Engineering, 2003, 125(4): 540-548. doi: 10.1115/1.1591202
    [38] LENNOX F G. Shrinkage of collagen[J]. Biochimica et Biophysica Acta, 1949, 3: 170-187. doi: 10.1016/0006-3002(49)90090-6
    [39] CHACHRA D, GRATZER P F, PEREIRA C A, et al. Effect of applied uniaxial stress on rate and mechanical effects of cross-linking in tissue-derived biomaterials[J]. Biomaterials, 1996, 17(19): 1865-1875. doi: 10.1016/0142-9612(95)00305-3
    [40] HARRIS J L, WELLS P B, HUMPHREY J D. Altered mechanical behavior of epicardium due to isothermal heating under biaxial isotonic loads[J]. Journal of Biomechanical Engineering, 2003, 125(3): 381-388. doi: 10.1115/1.1567754
    [41] WELLS P B, HARRIS J L, HUMPHREY J D. Altered mechanical behavior of epicardium under isothermal biaxial loading[J]. Journal of Biomechanical Engineering, 2004, 126(4): 492-497. doi: 10.1115/1.1785807
    [42] OZAWA T. Kinetic analysis of derivative curves in thermal analysis[J]. Journal of Thermal Analysis, 1970, 2: 301-324. doi: 10.1007/BF01911411
    [43] MILES C A, BURJANADZE T V, BAILEY A J. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry[J]. Journal of Molecular Biology, 1995, 245(4): 437-446. doi: 10.1006/jmbi.1994.0035
    [44] XU F, LU T J. Introduction to Skin Biothermomechanics and Thermal Pain[M]. New York: Science Press, 2011.
    [45] LIU H, LI M, OUYANG C, et al. Biofriendly, stretchable, and reusable hydrogel electronics as wearable force sensors[J]. Small, 2018, 14(36): 1801711. doi: 10.1002/smll.201801711
    [46] LI Y, HUANG G, ZHANG X, et al. Magnetic hydrogels and their potential biomedical applications[J]. Advanced Functional Materials, 2013, 23(6): 660-672. doi: 10.1002/adfm.201201708
    [47] LIN M, LUO Z Y, BAI B F, et al. Fluid dynamics analysis of shear stress on nerve endings in dentinal microtubule: a quantitative interpretation of hydrodynamic theory for dental pain[J]. Journal of Mechanics in Medicine and Biology, 2011, 11(1): 205-219. doi: 10.1142/S0219519411003983
    [48] LIU Y, LIU S, LI M, et al. Quantification of ureteral pain sensation induced by kidney stone[J]. Journal of Applied Mechanics, 2023, 90(8): 081003. doi: 10.1115/1.4062222
    [49] SU L, WANG M, YIN J, et al. Distinguishing poroelasticity and viscoelasticity of brain tissue with time scale[J]. Acta Biomaterialia, 2023, 155: 423-435. doi: 10.1016/j.actbio.2022.11.009
    [50] ISOMURSU A, PARK K Y, HOU J, et al. Directed cell migration towards softer environments[J]. Nature Materials, 2022, 21(9): 1081-1090. doi: 10.1038/s41563-022-01294-2
    [51] CHEN X, TI F, LI M, et al. Theory of fluid saturated porous media with surface effects[J]. Journal of the Mechanics and Physics of Solids, 2021, 151: 104392. doi: 10.1016/j.jmps.2021.104392
    [52] 杨进, 谢守志, 刘嘉, 等. 神经内镜第三脑室底造瘘术治疗Chiari畸形Ⅰ型合并脑积水的疗效及机制研究[J]. 中华神经外科杂志, 2023, 39(12): 1222-1228. doi: 10.3760/cma.j.cn112050-20230625-00181

    YANG Jin, XIE Shouzhi, LIU Jia, et al. Study on the therapeutic effect and mechanism of endoscopic third ventriculostomy in the treatment of Chiari malformation type Ⅰ with hydrocephalus[J]. Chinese Journal of Neurosurgery, 2023, 39(12): 1222-1228. (in Chinese) doi: 10.3760/cma.j.cn112050-20230625-00181
    [53] HU Y, JIA Y, WANG S, et al. An ECM-mimicking, injectable, viscoelastic hydrogel for treatment of brain lesions[J]. Advanced Healthcare Materials, 2023, 12(1): 2201594. doi: 10.1002/adhm.202201594
    [54] 郭卉, 贺昱昇, 刘梦洁, 等. 肿瘤力医学[J]. 中华肿瘤杂志, 2024, 46(6): 536-548.

    GUO Hui, HE Yusheng, LIU Mengjie, et al. Tumor mechanomedicine[J]. Chinese Journal of Oncology, 2024, 46(6): 536-548. (in Chinese)
    [55] LIU S, LI Y, HONG Y, et al. Mechanotherapy in oncology: targeting nuclear mechanics and mechanotransduction[J]. Advanced Drug Delivery Reviews, 2023, 194: 114722. doi: 10.1016/j.addr.2023.114722
  • 加载中
图(13)
计量
  • 文章访问数:  462
  • HTML全文浏览量:  101
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-29
  • 修回日期:  2024-04-16
  • 刊出日期:  2024-06-01

目录

    /

    返回文章
    返回