留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变节点余能原理基面力元法单元模型性能研究

王耀 胥民尧 纵岗 侯长超

王耀, 胥民尧, 纵岗, 侯长超. 变节点余能原理基面力元法单元模型性能研究[J]. 应用数学和力学, 2025, 46(3): 353-370. doi: 10.21656/1000-0887.450059
引用本文: 王耀, 胥民尧, 纵岗, 侯长超. 变节点余能原理基面力元法单元模型性能研究[J]. 应用数学和力学, 2025, 46(3): 353-370. doi: 10.21656/1000-0887.450059
WANG Yao, XU Minyao, ZONG Gang, HOU Changchao. Performances of Variable-Node Elements With the Base Force Element Method Under the Complementary Energy Principle[J]. Applied Mathematics and Mechanics, 2025, 46(3): 353-370. doi: 10.21656/1000-0887.450059
Citation: WANG Yao, XU Minyao, ZONG Gang, HOU Changchao. Performances of Variable-Node Elements With the Base Force Element Method Under the Complementary Energy Principle[J]. Applied Mathematics and Mechanics, 2025, 46(3): 353-370. doi: 10.21656/1000-0887.450059

变节点余能原理基面力元法单元模型性能研究

doi: 10.21656/1000-0887.450059
基金项目: 

2023年度国家外国专家项目(个人类) G2023014042L

江苏省高职院校教师访学研修项目 2024GRFX071

江苏省高等学校自然科学研究A类项目 19KJB560006

详细信息
    通讯作者:

    王耀(1986—),男,副教授,博士(通讯作者. E-mail: yaowang@yctei.edu.cn)

  • 中图分类号: O343.1;O343.2

Performances of Variable-Node Elements With the Base Force Element Method Under the Complementary Energy Principle

  • 摘要: 为了解决疏密单元网格交界面节点位移不协调、求解方程构造复杂及空间可扩展性能差的问题,基于余能原理基面力元法提出了一种可变节点数量及位置的单元模型,并针对任意单元类型建立了一种具有统一形式的显式求解方法. 首先,建立了一种二维可变边中节点单元模型,介绍了边中节点的柔度贡献矩阵及节点位移显式表达式;随后,将该模型扩展到三维层次,建立了一种可变面中节点单元模型,并将节点柔度贡献矩阵及节点位移表达式扩展到三维单元. 基于上述模型,建立了平面及空间问题的疏密网格悬挂单元模型,并通过端部承受弯矩荷载、集中荷载及拉伸荷载的悬臂梁算例,论证了平面及空间可变节点单元模型、疏密网格悬挂单元模型的数值精度和适用性. 研究表明,基于余能原理基面力元法建立的平面及空间可变节点单元模型具有较高的数值精度;此外,疏密网格之间的交界面无需进行任何处理措施,也无需构造插值函数或约束函数,仅依靠疏密网格交界面共用的边中节点(2D)及面中节点(3D)即可确保疏密网格交界面的节点位移协调;同时,模型和方法独立于单元类型、单元维度、节点数量及分布等因素,具有优异的空间可扩展性能及易于程序化的特点.
  • 图  1  位移与变形

    Figure  1.  The displacement and deformation

    图  2  基面力[14]

    Figure  2.  Base forces[14]

    图  3  四面体及面上的力[14]

    Figure  3.  The tetrahedron and the forces[14]

    图  4  任意形状的基面力元法单元

    Figure  4.  The element with an arbitrary shape based on the BFEM

    图  5  二维可变节点基面力元法单元

    Figure  5.  The 2D variable-node element based on the BFEM

    图  6  三维六面体单元

    Figure  6.  3D hexahedron element

    图  7  三维可变节点基面力元法单元

    Figure  7.  The 3D variable-node element based on the BFEM

    图  8  悬臂梁构件

    Figure  8.  The cantilever beam

    图  9  网格剖分模型

    Figure  9.  The mesh models

    图  10  数值解与理论解对比(承受弯矩荷载)

    Figure  10.  The comparison of numerical and theoretical solutions (moment load)

    图  11  弯曲正应力分布云图(承受弯矩荷载)

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  11.  The distributions of bending normal stresses (moment load)

    图  12  数值解与理论解对比(承受竖向集中荷载)

    Figure  12.  The comparison of numerical and theoretical solutions (concentrated force)

    图  13  剪应力分布云图及变化规律

    Figure  13.  The distribution of shear stresses and variation trends

    图  14  数值解与理论解对比(承受水平拉伸荷载)

    Figure  14.  The comparison of numerical and theoretical solutions(tension force)

    图  15  悬挂单元网格剖分模型

    Figure  15.  The mesh models of hanging elements

    图  16  数值解与理论解对比(悬挂单元模型)

    Figure  16.  The comparison of numerical and theoretical solutions (hanging element model)

    图  17  弯曲正应力分布云图(悬挂单元模型)

    Figure  17.  The distributions of bending normal stresses (hanging element model)

    图  18  不同网格尺寸的悬挂单元模型

    Figure  18.  The hanging element model with different mesh sizes

    图  19  网格尺寸对数值分析精度的影响

    Figure  19.  The effects of the mesh size on the numerical accuracy

    图  20  三维悬臂梁模型

    Figure  20.  The 3D cantilever beam

    图  21  数值解与理论解对比(三维悬臂梁模型)

    Figure  21.  The comparison of numerical and theoretical solutions (3D cantilever beam)

    图  22  弯曲正应力分布云图(三维悬臂梁模型)

    Figure  22.  The distribution of bending normal stresses (3D cantilever beam)

    图  23  柱加载模型及网格模型

    Figure  23.  The loading model and mesh model for the column

    图  24  三维六面体悬挂网格模型

    Figure  24.  The 3D hexahedron hanging element method

    图  25  数值解与理论解对比(三维六面体悬挂网格模型)

    Figure  25.  The comparison of numerical and theoretical solutions (3D hexahedron hanging element method)

    图  26  弯曲正应力分布云图(三维六面体悬挂网格模型)

    Figure  26.  The distribution of bending normal stresses (3D hexahedron hanging element method)

    表  1  不同位置的节点位移及误差

    Table  1.   The nodal displacements and errors at different locations

    №. x/m theoretical solution mesh Ⅰ (error) mesh Ⅱ (error) mesh Ⅲ (error) mesh Ⅳ (error)
    1 1.000 5 -0.006 01 -0.006 10(1.497 5%)* -0.006 14(2.163 0%)* -0.006 42(6.821 9%)* -0.006 57(9.317 8%)*
    2 2.001 0 -0.024 02 -0.024 26(0.999 1%) -0.024 37(1.457 1%) -0.025 02(4.163 1%) -0.025 56(6.411 3%)
    3 2.501 2 -0.037 54 -0.037 83(0.772 5%) -0.038 00(1.255 3%) -0.038 85(3.489 6%) -0.039 59(5.460 8%)
    4 3.001 5 -0.054 05 -0.054 47(0.777 0%) -0.054 73(1.258 0%) -0.055 73(3.108 2%) -0.056 65(4.810 3%)
    5 4.002 0 -0.096 1 -0.096 70(0.624 3%) -0.097 04(0.978 1%) -0.098 52(2.518 2%) -0.099 91(3.964 6%)
    6 4.502 2 -0.121 62 -0.122 26(0.526 2%) -0.122 71(0.896 2%) -0.124 43(2.310 4%) -0.126 00(3.601 3%)
    7 4.989 9 -0.149 4 -0.150 06(0.140 1%) -0.150 32(0.313 6%) -0.151 70(1.234 5%) -0.153 15(2.202 2%)
    下载: 导出CSV

    表  2  单元应力对比结果(受拉为正)

    Table  2.   Comparison of element stresses (tension is positive)

    element №. numerical result in this paper QIANG Tianchi’s numerical result[24] theoretical result
    1 1.000 0 1.000 0
    2 0.999 9 1.000 0
    3 0.999 999 978 ~ 1.000 000 023 0.995 4 1.000 0
    4 1.003 7 1.000 0
    - 1.000 0
    下载: 导出CSV

    表  3  节点位移对比结果

    Table  3.   Comparison of nodal displacements

    nodal №. numerical result in this paper QIANG Tianchi’s numerical result[24] theoretical result
    1 2.999 495~3.000 504 2.994 2 3.000 0
    下载: 导出CSV
  • [1] 钟红, 林皋, 陈健云. 一种用于有限元疏密过渡的新型十三节点单元[J]. 哈尔滨工业大学学报, 2009, 41(4): 219-221. doi: 10.3321/j.issn:0367-6234.2009.04.050

    ZHONG Hong, LIN Gao, CHEN Jianyun. A thirteen-node element for transition between course and fine finite element meshes[J]. Journal of Harbin Institute of Technology, 2009, 41(4): 219-221. (in Chinese) doi: 10.3321/j.issn:0367-6234.2009.04.050
    [2] LIM J H, SOHN D, IM S. Variable-node element families for mesh connection and adaptive mesh computation[J]. Structural Engineering and Mechanics, 2012, 43(3): 349-370. doi: 10.12989/sem.2012.43.3.349
    [3] TU T K, YU H F, RAMIREZ-GUZMAN L, et al. From mesh generation to scientific visualization: an end-to-end approach to parallel supercomputing[C]//SC' 06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. Tampa, FL, USA: IEEE, 2006: 12.
    [4] HIRSHIKESH, PRAMOD A L N, OOI E T, et al. An adaptive scaled boundary finite element method for contact analysis[J]. European Journal of Mechanics A: Solids, 2021, 86: 104180. doi: 10.1016/j.euromechsol.2020.104180
    [5] WIJESINGHE D R, DYSON A, YOU G, et al. Development of the scaled boundary finite element method for image-based slope stability analysis[J]. Computers and Geotechnics, 2022, 143: 104586. doi: 10.1016/j.compgeo.2021.104586
    [6] 强天驰, 寇晓东, 周维垣. 三维有限元网格加密界面协调方法及在大坝开裂分析中的应用[J]. 岩石力学与工程学报, 2000, 19(5): 562-566. doi: 10.3321/j.issn:1000-6915.2000.05.004

    QIANG Tianchi, KOU Xiaodong, ZHOU Weiyuan. Three-dimensional fem interface coupled method and its application to arch dam fracture analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(5): 562-566. (in Chinese) doi: 10.3321/j.issn:1000-6915.2000.05.004
    [7] 钟红, 林皋, 胡志强. 有限元计算中疏密网格过渡方法研究[J]. 计算力学学报, 2007, 24(6): 887-891. doi: 10.3969/j.issn.1007-4708.2007.06.031

    ZHONG Hong, LIN Gao, HU Zhiqiang. Two methods for transition between coarse and fine finite elements[J]. Chinese Journal of Computational Mechanics, 2007, 24(6): 887-891. (in Chinese) doi: 10.3969/j.issn.1007-4708.2007.06.031
    [8] 孙志刚, 宋迎东, 上官莉英, 等. 无虚拟节点的有限元界面协调技术[J]. 计算力学学报, 2005, 22(3): 374-378. doi: 10.3969/j.issn.1007-4708.2005.03.024

    SUN Zhigang, SONG Yingdong, SHANGGUAN Liying, et al. A consistent method without pseudo-nodes for FEM interface[J]. Chinese Journal of Computational Mechanics, 2005, 22(3): 374-378. (in Chinese) doi: 10.3969/j.issn.1007-4708.2005.03.024
    [9] CHO Y S, JUN S, IM S, et al. An improved interface element with variable nodes for non-matching finite element meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(27/28/29): 3022-3046.
    [10] 王爱民, 王勖成. 有限元计算中疏密网格间过渡单元的构造[J]. 清华大学学报(自然科学版), 1999, 39(8): 101-104.

    WANG Aimin, WANG Xucheng. Construction of the transition elements between the sparse and dense meshes in the finite element computation[J]. Journal of Tsinghua University (Science and Technology), 1999, 39(8): 101-104. (in Chinese)
    [11] PENG Y J, YING L P, KAMEL M M A, et al. Mesoscale fracture analysis of recycled aggregate concrete based on digital image processing technique[J]. Structural Concrete, 2021, 22(S1): E33-E47.
    [12] JIANG X X, ZHONG H, LI D Y, et al. Three-dimensional dynamic fracture analysis using scaled boundary finite element method: a time-domain method[J]. Engineering Analysis With Boundary Elements, 2022, 139: 32-45. doi: 10.1016/j.enganabound.2022.03.007
    [13] AMINPOUR M A, RANSOM J B, MCCLEARY S L. A coupled analysis method for structures with independently modelled finite element subdomains[J]. International Journal for Numerical Methods in Engineering, 1995, 38(21): 3695-3718. doi: 10.1002/nme.1620382109
    [14] GAO Y C. A new description of the stress state at a point with applications[J]. Archive of Applied Mechanics, 2003, 73(3): 171-183.
    [15] GAO Y C. Complementary energy principle for large elastic deformation[J]. Science in China Series G, 2006, 49(3): 341-356. doi: 10.1007/s11433-006-0341-7
    [16] 彭一江. 基于基面力概念的新型有限元方法[D]. 北京: 北京交通大学, 2006.

    PENG Yijiang. A new finite element method based on the concept of base force[D]. Beijing: Beijing Jiaotong University, 2006. (in Chinese)
    [17] PENG Y J, GUO Q, ZHANG Z F, et al. Application of base force element method on complementary energy principle to rock mechanics problems[J]. Mathematical Problems in Engineering, 2015, 2015: 292809.
    [18] PENG Y J, LIU Y H. Base force element method of complementary energy principle for large rotation problems[J]. Acta Mechanica Sinica, 2009, 25(4): 507-515. doi: 10.1007/s10409-009-0234-x
    [19] PENG Y J, BAI Y Q, GUO Q. Analysis of plane frame structure using base force element method[J]. Structural Engineering and Mechanics, 2017, 62(1): 11-20. doi: 10.12989/sem.2017.62.1.011
    [20] PENG Y J, ZONG N N, ZHANG L J, et al. Application of 2D base force element method with complementary energy principle for arbitrary meshes[J]. Engineering Computations, 2014, 31(4): 691-708. doi: 10.1108/EC-10-2011-0125
    [21] 龚琳琦, 陈曦昀, 郭庆, 等. 基面力单元法在空间几何非线性问题中的应用[J]. 应用数学和力学, 2021, 42(8): 785-793. doi: 10.21656/1000-0887.410341

    GONG Linqi, CHEN Xiyun, GUO Qing, et al. Application of the base force element method to spacial geometrically nonlinear problems[J]. Applied Mathematics and Mechanics, 2021, 42(8): 785-793. (in Chinese) doi: 10.21656/1000-0887.410341
    [22] WANG Y, PENG Y J, KAMEL M M A, et al. Base force element method based on the complementary energy principle for the damage analysis of recycled aggregate concrete[J]. International Journal for Numerical Methods in Engineering, 2020, 121(7): 1484-1506. doi: 10.1002/nme.6276
    [23] WANG Y, PENG Y J, KAMEL M M A, et al. Modeling interfacial transition zone of RAC based on a degenerate element of BFEM[J]. Construction and Building Materials, 2020, 252: 119063. doi: 10.1016/j.conbuildmat.2020.119063
    [24] 强天驰, 寇晓东, 周维垣. 三维有限元网格加密方法及其工程应用[J]. 水利学报, 2000, 31(7): 38-43.

    QIANG Tianchi, KOU Xiaodong, ZHOU Weiyuan. The mesh densification method for 3D FEM and its application[J]. Journal of Hydraulic Engineering, 2000, 31(7): 38-43. (in Chinese)
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  29
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-05
  • 修回日期:  2024-05-04
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回