留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维六方压电准晶中唇形孔口次生四条裂纹的反平面问题

王程颜 刘官厅

王程颜, 刘官厅. 一维六方压电准晶中唇形孔口次生四条裂纹的反平面问题[J]. 应用数学和力学, 2024, 45(7): 886-897. doi: 10.21656/1000-0887.440346
引用本文: 王程颜, 刘官厅. 一维六方压电准晶中唇形孔口次生四条裂纹的反平面问题[J]. 应用数学和力学, 2024, 45(7): 886-897. doi: 10.21656/1000-0887.440346
WANG Chengyan, LIU Guanting. The Antiplane Problem of a Lip-Shaped Orifice With 4 Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystal[J]. Applied Mathematics and Mechanics, 2024, 45(7): 886-897. doi: 10.21656/1000-0887.440346
Citation: WANG Chengyan, LIU Guanting. The Antiplane Problem of a Lip-Shaped Orifice With 4 Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystal[J]. Applied Mathematics and Mechanics, 2024, 45(7): 886-897. doi: 10.21656/1000-0887.440346

一维六方压电准晶中唇形孔口次生四条裂纹的反平面问题

doi: 10.21656/1000-0887.440346
基金项目: 

国家自然科学基金 12162027

内蒙古自治区高等学校科学技术研究自然科学重点项目 NJZZ22574

详细信息
    作者简介:

    王程颜(1999—),男,硕士生(E-mail: 2641734345@qq.com)

    通讯作者:

    刘官厅(1966—),男,教授,博士(通讯作者. E-mail: guantingliu@imnu.edu.cn)

  • 中图分类号: O346.1

The Antiplane Problem of a Lip-Shaped Orifice With 4 Edge Cracks in 1D Hexagonal Piezoelectric Quasicrystal

  • 摘要: 通过构造共形映射,利用Stroh型公式,研究了一维六方压电准晶体中唇形孔口次生四条裂纹的反平面问题,并对裂纹尖端处的应力强度因子及能量释放率进行了解析求解. 在数值算例中,分析了缺陷的几何参数和外部载荷对应力强度因子及能量释放率的影响规律. 结果表明:唇形孔口左右任意一侧裂纹长度或孔口长度的增长,对左右两侧裂纹的扩展有促进作用;上下两侧裂纹长度的增长,对左右两侧裂纹的扩展无明显的影响;唇形孔口的高度越高,对左右两侧裂纹扩展的抑制作用越显著;外部机械载荷和电载荷增大,对裂纹的扩展有促进作用. 一些特殊缺陷可由该缺陷的相关参数退化得来,如唇形孔口次生两条裂纹、唇型裂纹、Griffith裂纹等.
  • 图  1  一维六方压电准晶中唇形孔口次生四条裂纹的缺陷模型

    Figure  1.  A defect model for a lip-shaped orifice with 4 edge cracks in the 1D hexagonal piezoelectric quasicrystal material

    图  2  Ka的变化曲线

    Figure  2.  The curves of K with ratio a

    图  3  KL1/a的变化曲线

    Figure  3.  The curves of K with ratio L1/a

    图  4  Kh/a的变化曲线

    Figure  4.  The curves of K with ratio h/a

    图  5  Kh/a的变化曲线(L1=L2=L3=0 m)

    Figure  5.  The curves of K with ratio h/a(L1=L2=L3=0 m)

    图  6  L3K的影响曲线

    Figure  6.  The influence curves of L3 on K

    图  7  不同L1/a条件下,G/Gcra的变化关系

    Figure  7.  The change curves of G/Gcr with a under different L1/a conditions

    图  8  在不同D2条件下,G/Gcrσ32的变化曲线

    Figure  8.  The curves of G/Gcr with respect to σ32 for different D2 values

    图  9  D2=0 C/m2G/Gcrσ32的变化关系

    Figure  9.  For D2=0 C/m2, the curves of G/Gcr with σ32

    图  10  不同L2条件下,G/GcrH32的变化曲线

    Figure  10.  The change curves of G/Gcr with H32 under different L2 conditions

    图  11  不同L2条件下,G/GcrR3的变化关系

    Figure  11.  The change curves of G/Gcrwith R3 under different L2 conditions

    图  12  G/GcrK2的变化曲线

    Figure  12.  The change curves of G/Gcr with K2

    图  13  G/GcrL1/a的变化曲线

    Figure  13.  The change curves of G/Gcr with L1/a

    图  14  G/Gcrh/a的变化曲线

    Figure  14.  The change curves of G/Gcr with h/a

    图  15  L3G/Gcr的影响规律

    Figure  15.  The change curves of G/Gcr with L3

    A1  唇形孔口次生四条裂纹的外部区域到ζ平面单位圆的内部的共形映射

    A1.  Conformal transformation from the exterior of the lip-shaped orifice with 4 cracks to the exterior region of the unit circle

    表  1  一维六方压电准晶材料参数[11]

    Table  1.   Material parameters of the 1D hexagonal piezoelectric quasicrystal[11]

    C44/GPa R3/GPa K2/GPa e15/(C·m-2) d15/(C·m-2) λ11/(C2·N-1·m-2)
    50 1.2 0.3 -0.138 -0.160 8.26×10-11
    下载: 导出CSV
  • [1] ROCHAL S B. Second-order terms of the phonon-phason dynamic matrix of an icosahedral quasicrystal: diffuse intensity and the profile shape around the Bragg peaks[J]. Physical Review B, 2001, 64 (14): 144204. doi: 10.1103/PhysRevB.64.144204
    [2] ROCHAL SB, LORMAN V L. Inhomogeneous, disordered, and partially ordered systems-minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application to the problem of internal friction in the i-AlPdMn alloy[J]. Physical Review B, 2002, 66 (14): 144204. doi: 10.1103/PhysRevB.66.144204
    [3] MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Leyden: Noordhoff International, 1953.
    [4] FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [5] 郭俊宏, 刘官厅. 一维六方准晶中具有不对称裂纹的圆形孔口问题的解析解[J]. 应用数学学报, 2007, 30 (6): 1066-1075. doi: 10.3321/j.issn:0254-3079.2007.06.012

    GUO Junhong, LIU Guanting. Analytic solutions of the one-dimensional hexagonal quasicrystals about problem of a circular hole with asymmetry cracks[J]. Acta Mathematicae Applicatae Sinica, 2007, 30 (6): 1066-1075. (in Chinese) doi: 10.3321/j.issn:0254-3079.2007.06.012
    [6] 郭俊宏, 刘官厅. 一维六方准晶中带双裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2008, 29 (4): 439-446. doi: 10.3879/j.issn.1000-0887.2008.04.006

    GUO Junhong, LIU Guanting. Analytic solutions to problem of elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29 (4): 439-446. (in Chinese) doi: 10.3879/j.issn.1000-0887.2008.04.006
    [7] LI L H, FAN T Y. Exact solutions of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal[J]. Applied Mathematics and Computation, 2008, 196 (1): 1-5. doi: 10.1016/j.amc.2007.05.028
    [8] SHI W. Collinear periodic cracks and/or rigid line inclusions of antiplane sliding mode in one-dimensional hexagonal quasicrystal[J]. Applied Mathematics and Computation, 2009, 215 (3): 1062-1067. doi: 10.1016/j.amc.2009.06.055
    [9] ZHOU Y B, LI X F. Two collinear mode-Ⅲ cracks in one-dimensional hexagonal piezoelectric quasicrystal strip[J]. Engineering Fracture Mechanics, 2018, 189 (15): 133-147.
    [10] AlTAY G, DÖKMECI M C. On the fundamental equations of piezoelasticity of quasicrystal media[J]. International Journal of Solids and Structures, 2012, 49 (23/24): 3255-3262.
    [11] LI X Y, LI P D, WU T H, et al. Three-dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect[J]. Physics Letters A, 2014, 378 (10): 826-834. doi: 10.1016/j.physleta.2014.01.016
    [12] 张也, 刘官厅, 周彦斌. 一维六方压电准晶体中Ⅲ型偏折裂纹的断裂问题[J]. 内蒙古师范大学学报(自然科学汉文版), 2023, 52 (5): 521-529. doi: 10.3969/j.issn.1001-8735.2023.05.012

    ZHANG Ye, LIU Guanting, ZHOU Yanbin. Fracture problem of type Ⅲ deflection crack in one-dimensional hexagonal piezoelectric quasicrystals[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2023, 52 (5): 521-529. (in Chinese) doi: 10.3969/j.issn.1001-8735.2023.05.012
    [13] 匡震邦. 只有尖点的平面曲边多角形缺陷的应力分析[J]. 力学学报, 1979, 15 (2): 118-128. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB197902002.htm

    KUANG Zhenbang. Stress analysis of planar curved polygonal defects with only cusp points[J]. Chinese Journal of Theoretical and Applied Mechanics, 1979, 15 (2): 118-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB197902002.htm
    [14] 郭怀民, 赵国忠, 刘官厅, 等. 含唇口次生两不对称裂纹的一维六方压电准晶体的反平面剪切问题[J]. 固体力学学报, 2024, 45 (1): 123-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202401010.htm

    GUO Huaimin, ZHAO Guozhong, LIU Guanting, et al. Inverse plane shear problem of one-dimensional hexagonal piezoelectric quasicrystals with secondary asymmetric cracks at the lip[J]. Chinese Journal of Solid Mechanics, 2024, 45 (1): 123-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202401010.htm
    [15] 于静, 郭俊宏, 邢永明. 压电复合材料中Ⅲ型唇形裂纹问题的解析解[J]. 复合材料学报, 2014, 31 (5): 1357-1363. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201405034.htm

    YU Jing, GUO Junhong, XING Yongming. Analytical solution of type Ⅲ lip crack in piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2014, 31 (5): 1357-1363. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201405034.htm
    [16] 范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003.

    FAN Tianyou. Foundation of Fracture Mechanics[M]. Beijing: Science Press, 2003. (in Chinese)
    [17] YU J, GUO J H, PAN E, et al. General solutions of plane problem in one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics[J]. Applied Mathematics and Mechanics(English Edition), 2015, 36 (6): 793-814. doi: 10.1007/s10483-015-1949-6
    [18] 樊世旺, 郭俊宏. 一维六方压电准晶三角形孔边裂纹反平面问题[J]. 应用力学学报, 2016, 33 (3): 421-426. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201603010.htm

    FAN Shiwang, GUO Junhong. Inverse plane problem of one-dimensional hexagonal piezoelectric quasicrystal triangle hole edge crack[J]. Chinese Journal of Applied Mechanics, 2016, 33 (3): 421-426. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201603010.htm
    [19] WANG Y J, GAO C F. The mode Ⅲ cracks originating from the edge of a circular hole in a piezoelectric solid[J]. International Journal of Solids and Structures, 2008, 45 (16): 4590-4599.
    [20] GUO J H, YU J, SI R. A semi-inverse method of a Griffith crack in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2013, 219 (14): 7445-7449.
    [21] LI L H, LIU G T. Interaction of a dislocation with an elliptical hole in icosahedral quasicrystals[J]. Philosophical Magazine Letters, 2013, 93 (3): 142-151.
    [22] 刘鑫, 郭俊宏, 于静. 磁电弹性材料中唇形裂纹反平面问题[J]. 内蒙古大学学报(自然科学版), 2016, 47 (1): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-NMGX202005003.htm

    LIU Xin, GUO Junhong, YU Jing. Antiplane problem of lip cracks in magnetoelectroelastic materials[J]. Journal of Inner Mongolia University (Natural Science Edition), 2016, 47 (1): 37-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NMGX202005003.htm
    [23] GUO J H, LU Z X, HAN H T, et al. Exact solutions for anti-plane problem of two asymmetrical edge cracks emanating from an elliptical hole in a piezoelectric material[J]. International Journal of Solids and Structures, 2009, 46 (21): 3799-3809.
    [24] 高媛媛, 刘官厅. 一维正交准晶中具有四条裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2019, 40 (2): 210-222. doi: 10.21656/1000-0887.390032

    GAO Yuanyuan, LIU Guanting. Analytical solution of elliptic orifice problem with four cracks in one-dimensional orthogonal quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40 (2): 210-222. (in Chinese) doi: 10.21656/1000-0887.390032
    [25] YANG D S, LIU G T. Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Physics B, 2020, 29 (10): 104601.
    [26] GUO J H, LU Z X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2011, 217 (22): 9397-9403.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  53
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-05
  • 修回日期:  2024-01-09
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回