Analysis of Critical Fracturing Pressure of Splitting Grouting Based on the Cavity Expansion Theory
-
摘要: 基于圆孔扩张理论,结合SMP(spatially mobilized plane)强度准则与临界状态概念,将变换应力后的张量应用于能描述软黏土各向异性的Wheeler模型,对劈裂注浆中球孔扩张问题进行了分析.采用双区间分析模型将土体分为弹性区和塑性区,通过弹塑性区间边界条件,推导了孔周土体的应力应变场和位移场,对劈裂注浆后的土体扩张半径、启劈压力及塑性体应变进行理论计算,并以算例进行了论证.结果表明:径向有效应力和环向有效应力随着参数r/rp的增大而减小;劈裂注浆的启劈压力随着内摩擦角数值的增大呈现上涨趋势;内摩擦角是土体进行弹塑性分析时的一个重要影响因素,当内摩擦角越大时,塑性环向应变、塑性区半径、塑性区位移越小,启劈压力越大.Abstract: Based on the spherical cavity expansion theory, combined with the spatially mobilized plane (SMP) criterion and the critical state concept, the Wheeler model describing the anisotropy of soft clay was applied to analyze the spherical cavity expansion problem in split grouting. A dual interval analysis model was used to divide the soil into elastic and plastic zones, and the stress-strain and displacement fields of the soil around the cavity were derived under the elastic-plastic interval boundary conditions. Theoretical calculations of the soil expansion radius, the critical fracturing pressure, and the plastic volumetric strain after split grouting were carried out and demonstrated by several examples. The results show that, the radial and circumferential stresses decrease with parameter r/rp; the critical fracturing pressure increases with the internal friction angle; the internal friction angle is an important influential factor in the elastic-plastic analysis of the soil, and the larger the internal friction angle is, the smaller the plastic circumferential strain, the plastic radius and the plastic displacement, and the larger the splitting pressure, will be.
-
Key words:
- critical fracturing pressure /
- Wheeler model /
- SMP criterion /
- spherical cavity expansion
-
表 1 启劈压力对比数值
Table 1. Comparative values of the critical fracturing pressure
φ/(°) ref. [28] this papaer pshui/kPa relative increment $ \widetilde{p}_{{\rm{u}}} $/kPa relative increment 26 598.1 0.030 2
0.029 4
0.028 9
0.028 2
0.078 734.7 0.031 7
0.032 4
0.033 0
0.033 5
0.099 827 616.7 35.8 28 635.4 37.0 29 654.3 38.3 30 673.3 39.6 33 730.8 44.0 -
[1] 马连生, 王腾, 周茗如, 等. 黄土劈裂注浆土体裂纹扩展模型研究[J]. 地下空间与工程学报, 2018, 14(4): 962-967.MA Liansheng, WANG Teng, ZHOU Mingru, et al. Study on the crack extended model for loess with fracturing grouting[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(4): 962-967. (in Chinese) [2] 沙飞, 李术才, 刘人太, 等. 富水砂层高效注浆材料试验与应用研究[J]. 岩石力学与工程学报, 2019, 38(7): 1420-1433.SHA Fei, LI Shucai, LIU Rentai, et al. Performance and engineering application of effective microfine cement-based grout(EMCG) for water-rich sand strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1420-1433. (in Chinese) [3] 张连震, 刘人太, 张庆松, 等. 软弱地层劈裂-压密注浆加固效果定量计算方法研究[J]. 岩石力学与工程学报, 2018, 37(5): 1169-1184.ZHANG Lianzhen, LIU Rentai, ZHANG Qingsong, et al. Calculation of reinforcement effect of fracturing-compaction grouting in soft strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5): 1169-1184. (in Chinese) [4] 石明生, 王复明, 刘恒, 等. 堤坝高聚物定向劈裂注浆试验与有限元模拟[J]. 水利学报, 2016, 47(8): 1087-1092.SHI Mingsheng, WANG Fuming, LIU Heng, et al. Finite-element simulation and experiment on polymer directional fracturing and grouting for dykes and dams[J]. Journal of Hydraulic Engineering, 2016, 47(8): 1087-1092. (in Chinese) [5] 李术才, 张伟杰, 张庆松, 等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学, 2014, 35(3): 744-752.LI Shucai, ZHANG Weijie, ZHANG Qingsong, et al. Research on advantage-fracture grouting mechanism and controlled grouting method in water-rich fault zone[J]. Rock and Soil Mechanics, 2014, 35(3): 744-752. (in Chinese) [6] 李鹏, 张庆松, 张霄, 等. 基于模型试验的劈裂注浆机制分析[J]. 岩土力学, 2014, 35(11): 3221-3230.LI Peng, ZHANG Qingsong, ZHANG Xiao, et al. Analysis of fracture grouting mechanism based on model test[J]. Rock and Soil Mechanics, 2014, 35(11): 3221-3230. (in Chinese) [7] 张乐文, 辛冬冬, 丁万涛, 等. 基于基床系数法的劈裂注浆过程分析[J]. 岩土工程学报, 2018, 40(3): 399-407.ZHANG Lewen, XIN Dongdong, DING Wantao, et al. Process analysis of split grouting based on foundation bed coefficient method[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 399-407. (in Chinese) [8] 李建斌, 刘汉龙, 孔纲强, 等. 侧向辐射注浆技术处治现役高速公路沉降分析[J]. 岩土力学, 2017, 38(S1): 479-487.LI Jianbin, LIU Hanlong, KONG Gangqiang, et al. Analysis of settlement of reinforced operating expressway using lateral radiation grouting technique[J]. Rock and Soil Mechanics, 2017, 38(S1): 479-487. (in Chinese) [9] 文磊, 孔纲强, 张振东, 等. 海相淤泥质土中后注浆微型钢管桩浆液扩散及承载特性研究[J]. 工程力学, 2019, 36(4): 214-220.WEN Lei, KONG Gangqiang, ZHANG Zhendong, et al. Study on the diffusion and bearing capacity of post-grouting steel pipe micropiles in marine muddy soil[J]. Engineering Mechanics, 2019, 36(4): 214-220. (in Chinese) [10] 党星海, 周鹏, 钞鑫, 等. 非饱和黄土中椭球形扩孔问题弹塑性解析[J]. 应用数学和力学, 2020, 41(9): 994-1010. doi: 10.21656/1000-0887.400186DANG Xinghai, ZHOU Peng, CHAO Xin, et al. Elastoplastic analysis of ellipsoidal hole expansion in unsaturated loess[J]. Applied Mathematics and Mechanics, 2020, 41(9): 994-1010. (in Chinese) doi: 10.21656/1000-0887.400186 [11] VESICĆ A S. Expansion of cavities in infinite soil mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(3): 265-290. doi: 10.1061/JSFEAQ.0001740 [12] 周茗如, 张建斌, 卢国文, 等. 扩孔理论在非饱和黄土劈裂注浆中的应用[J]. 建筑结构学报, 2018, 39(S1): 368-378.ZHOU Mingru, ZHANG Jianbin, LU Guowen, et al. Application of expansion hole theory in fracture grouting of unsaturated loess[J]. Journal of Building Structures, 2018, 39(S1): 368-378. (in Chinese) [13] 周亚龙, 王旭, 张延杰, 等. 灌注桩基础桩底复合式后注浆及承载特性研究[J]. 岩土工程学报, 2022, 44(10): 1864-1872.ZHOU Yalong, WANG Xu, ZHANG Yanjie, et al. Composite post grouting at pile tip and bearing characteristics of cast-in-place pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1864-1872. (in Chinese) [14] 叶俊能, 胡威, 周晔, 等. 基于广义SMP强度准则的球孔注浆理论计算及验证[J]. 工业建筑, 2023, 53(5): 150-157.YE Junneng, HU Wei, ZHOU Ye, et al. Theoretical calculations and verification of spherical cavity grouting based on generalized SMP strength criterion[J]. Industrial Construction, 2023, 53(5): 150-157. (in Chinese) [15] 殷杰. 结构性软黏土的修正剑桥模型[J]. 工程力学, 2013, 30(1): 190-197.YIN Jie. A modified Cam Clay model for structured soft clays[J]. Engineering Mechanics, 2013, 30(1): 190-197. (in Chinese) [16] 李镜培, 唐剑华, 李林, 等. 饱和黏土中柱孔三维弹塑性扩张机制研究[J]. 岩石力学与工程学报, 2016, 35(2): 378-386.LI Jingpei, TANG Jianhua, LI Lin, et al. Mechanism of three dimensional elastic-plastic expansion of cylindrical cavity in saturated clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 378-386. (in Chinese) [17] LI J P, LI L, SUN D A, et al. Analysis of undrained cylindrical cavity expansion considering three-dimensional strength of soils[J]. International Journal of Geomechanics, 2016, 16(5): 04016017. doi: 10.1061/(ASCE)GM.1943-5622.0000650 [18] LI J P, GONG W B, LI L, et al. Drained elastoplastic solution for cylindrical cavity expansion in K0-consolidated anisotropic soil[J]. Journal of Engineering Mechanics, 2017, 143(11): 04017133. doi: 10.1061/(ASCE)EM.1943-7889.0001357 [19] 左人宇, 罗锦华, 陆钊. 深圳海积软土基于CU试验的修正剑桥模型[J]. 地下空间与工程学报, 2016, 12(3): 646-655.ZUO Renyu, LUO Jinhua, LU Zhao. Modified Cam-Clay model based on the CU test about marine soft soil in Shenzhen[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(3): 646-655. (in Chinese) [20] 周攀, 李镜培, 李亮, 等. 结构性黄土排水柱孔扩张问题弹塑性解析[J]. 岩石力学与工程学报, 2021, 40(1): 175-186.ZHOU Pan, LI Jingpei, LI Liang, et al. Elastic-plastic solution for drained cylindrical cavity expansion in structured loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 175-186. (in Chinese) [21] WHEELER S J, NÄÄTÄNEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40(2): 403-418. doi: 10.1139/t02-119 [22] KARSTUNEN M, KOSKINEN M. Plastic anisotropy of soft reconstituted clays[J]. Canadian Geotechnical Journal, 2008, 45(3): 314-328. doi: 10.1139/T07-073 [23] MATSUOKA H, NAKAI T. Stress-deformation and strength characteristics of soil under three different principal stresses[J]. Proceedings of the Japan Society of Civil Engineers, 1974, 1974(232): 59-70. doi: 10.2208/jscej1969.1974.232_59 [24] MATSUOKA H, SUN D. Extension of spatially mobilized plane (SMP) to frictional and cohesive materials and its application to cemented sands[J]. Soils and Foundations, 1995, 35(4): 63-72. doi: 10.3208/sandf.35.4_63 [25] 姚仰平, 路德春, 周安楠, 等. 广义非线性强度理论及其变换应力空间[J]. 中国科学E辑: 工程科学材料科学, 2004, 34(11): 1283-1299.YAO Yangping, LU Dechun, ZHOU Annan, et al. Generalized nonlinear strength theory and transformed stress space[J]. Scientia Sinica (Series E), 2004, 34(11): 1283-1299. (in Chinese) [26] HAI S Y. 岩土介质小孔扩张理论[M]. 周国庆, 赵光思, 梁恒昌, 等译. 北京: 科学出版社, 2013.HAI S Y. Cavity Expansion Methods in Geomechanics[M]. ZHOU Guoqing, ZHAO Guangsi, LIANG Hengchang, et al, transl. Beijing: Science Press, 2013. (in Chinese) [27] 胡长明, 王志宇, 梅源, 等. 基于广义SMP准则的球孔扩张理论解及其应用[J]. 应用力学学报, 2020, 37(5): 1948-1956.HU Changming, WANG Zhiyu, MEI Yuan, et al. Theoretical solutions of spherical cavity expansion based on generalized SMP criterion and applications[J]. Chinese Journal of Applied Mechanics, 2020, 37(5): 1948-1956. (in Chinese) [28] 王腾. 湿陷性黄土劈裂注浆理论分析及试验研究[D]. 兰州: 兰州理工大学, 2017.WANG Teng. The theoretical analysis and experimental study of fracturing grouting of collapsible loess[D]. Lanzhou: Lanzhou University of Technology, 2017. (in Chinese) [29] 卢国文. 黄土扩孔问题的理论解析及其在劈裂注浆中的应用研究[D]. 兰州: 兰州理工大学, 2018.LU Guowen. Theoretical analysis of the problem of loess cavity expansion and its application in splitting grouting[D]. Lanzhou: Lanzhou University of Technology, 2018. (in Chinese) [30] 张玉伟, 翁效林, 宋战平, 等. 考虑黄土结构性和各向异性的修正剑桥模型[J]. 岩土力学, 2019, 40(3): 1030-1038.ZHANG Yuwei, WENG Xiaolin, SONG Zhanping, et al. A modified Cam-Clay model for structural and anisotropic loess[J]. Rock and Soil Mechanics, 2019, 40(3): 1030-1038. (in Chinese)) [31] 孔位学, 芮勇勤, 董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. 岩土力学, 2009, 30(11): 3278-3282.KONG Weixue, RUI Yongqin, DONG Baodi. Determination of dilatancy angle for geomaterials under non-associated flow rule[J]. Rock and Soil Mechanics, 2009, 30(11): 3278-3282. (in Chinese)