Finite Difference Solution of the Modified Mild Slope Equation for Wave Reflection by a Slope With Superimposed Undulating Seabed
-
摘要: 基于修正缓坡方程,建立了方程求解的有限差分模型,研究了斜坡叠加起伏海床对波浪的反射.首先,对波浪入射平面斜坡以及水平海床上单周期、双周期正弦沙纹的反射问题进行了验证,结果与他人的数值解、解析解及实验数据吻合较好,证明了该模型的正确性.接着,讨论了抛物形斜坡的上凸高度及下凸深度,斜坡叠加单周期正弦沙纹的数量、高度及长度,斜坡叠加双周期正弦沙纹的高度对波浪反射系数的影响.结果表明,反射系数随抛物形斜坡上凸高度的增大而减小,随下凸深度的增大而增大.斜坡叠加单周期正弦沙纹对波浪反射的规律与水平海床基本一致,相比水平海床Bragg共振相位下移的幅度随沙纹数量增加,先减小后保持不变的情况,斜坡叠加沙纹共振相位下移的幅度随沙纹数量增加先减小后增大.波浪入射斜坡叠加双周期正弦沙纹地形,随叠加的两个沙纹高度分别增加,Bragg共振峰值均相应地增加,共振带宽几乎不受影响,主振峰值的相位下移幅度减小,这与单周期沙纹中随沙纹高度增加,共振相位下移幅度更大的情况相反.对比发现:当固定沙纹的数量、长度、高度,不论是水平海床还是斜坡海床,双周期正弦沙纹对波浪的反射强度以及激发的共振带宽均大于单周期正弦沙纹,共振相位下移的幅度则小于单周期沙纹;斜坡叠加正弦沙纹对波浪的反射强度要大于水平海床,零反射的现象不再存在,主振峰值的相位下移幅度较水平海床更大.Abstract: A finite difference model was established to solve the modified mild slope equation, and the reflection of waves on the slope with superimposed undulating seabed was studied. Firstly, the reflection problems of incident waves on straight slope terrain, singly periodic sinusoidal sand ripples and doubly periodic sinusoidal sand ripples superimposed on the horizontal seabed, were verified in excellent agreement with the numerical and analytical solutions and experimental data of others, to prove the correctness of the model. Then, the influences of the upper convex height and lower convex depth of the slope with superimposed parabolic terrain, the number, height, and length of the slope with superimposed singly periodic sinusoidal sand ripples, and the height of the slope with superimposed doubly periodic sinusoidal sand ripples on wave reflection coefficients, were explored. The results show that, the reflection coefficient decreases with the upper convex height and increases with the lower convex depth on the parabolic slope. The law of wave reflection of slope with superimposed singly periodic sinusoidal sand ripples is the same as that of the horizontal seabed. Compared with the horizontal seabed, where the amplitude of the resonance phase downshift decreases with the number of sand ripples and then stays unchanged, the amplitude of the resonance phase downshift of the slope with superimposed sand ripples firstly decreases and then increases with the number of sand ripples. In the slope with superimposed doubly periodic sinusoidal sand ripples terrain, the peaks of the Bragg resonance increase with the heights of the 2 superimposed sand ripples, respectively, where the resonance bandwidth is almost unaffected, and the phase downshift amplitude of the peak Bragg primary resonance decreases, which is contrary to the situation that the amplitude of resonance phase downshift increases with the height of the singly periodic sand ripples. With the fixed number, length, and height of sand ripples, the reflection intensity of doubly periodic sinusoidal sand ripples on waves and the resonance bandwidth excited by them are larger than those of singly periodic sinusoidal sand ripples, and the amplitude of resonance phase downshift is smaller than that of singly periodic sand ripples, despite the horizontal seabed or the slope seabed. Moreover, the reflection intensity of the slope with superimposed sinusoidal sand ripples is greater than that of the horizontal seabed, the phenomenon of zero reflection no longer exists, and the phase downshift amplitude of the peak Bragg primary resonance is larger than that of the horizontal seabed.
-
Key words:
- modified mild slope equation /
- finite difference method /
- slope seabed /
- Bragg resonance reflection /
- phase downshift /
- resonance bandwidth
edited-byedited-by1) (我刊编委刘焕文推荐) -
图 6 本文MMSE数值解与Chamberlain和Porter[6]的MMSE数值解、Liu等[19]的MMSE解析解、Porter等[20]的MMSE数值解的对比
Figure 6. Comparison among the present numerical solution of the MMSE, the numerical solution of the MMSE by Chamberlain and Porter[6], the analytical solution of the MMSE by Liu et al. [19], and the numerical solution of the MMSE by Porter et al. [20]
表 1 水平海床上单周期正弦沙纹对波浪Bragg共振反射的实验参数[18]
Table 1. Experimental parameters of Bragg resonance reflection of waves by singly periodic sinusoidal sand ripples on the horizontal seabed[18]
h1/m N b/h1 d/m wave number k/m-1 relative water depth kh1 0.156 4 0.32 1 0.5π≤k≤2.5π 0.245 0≤kh1≤1.225 2 表 2 水平海床上双周期正弦沙纹地形对波浪Bragg共振反射的数值参数[22]
Table 2. Numerical parameters of Bragg resonance reflection of waves by doubly periodic sinusoidal sand ripples on the horizontal seabed[22]
h1/m N b1/h1 b2/h1 d/m m wave number k/m-1 relative water depth kh1 0.156 4 0.32 0.32 1 1/2 0.5π≤k≤2.5π 0.245 0≤kh1≤1.225 2 表 3 单周期正弦沙纹数量N对Bragg共振反射影响的计算工况
Table 3. The calculation cases of the influences of number N by singly periodic sinusoidal sand ripples on the Bragg resonance reflection
case N b/m d/m h3/m seabed slope 1 1 1.5 12 6 0 2 2 1.5 12 6 0 3 3 1.5 12 6 0 4 4 1.5 12 6 0 5 5 1.5 12 6 0 6 6 1.5 12 6 0 7 7 1.5 12 6 0 8 8 1.5 12 6 0 9 9 1.5 12 6 0 10 10 1.5 12 6 0 11 1 1.5 12 5.76 1/50 12 2 1.5 12 5.52 1/50 13 3 1.5 12 5.28 1/50 14 4 1.5 12 5.04 1/50 15 5 1.5 12 4.80 1/50 16 6 1.5 12 4.56 1/50 17 7 1.5 12 4.32 1/50 18 8 1.5 12 4.08 1/50 19 9 1.5 12 3.84 1/50 20 10 1.5 12 3.60 1/50 表 4 单周期正弦沙纹高度b对Bragg共振反射影响的计算工况
Table 4. The calculation cases of the influences of height b by singly periodic sinusoidal sand ripples on the Bragg resonance reflection
case N b/m d/m h3/m seabed slope 1 8 0.5 12 6 0 2 8 0.8 12 6 0 3 8 1.0 12 6 0 4 8 1.2 12 6 0 5 8 1.5 12 6 0 6 8 0.5 12 4.08 1/50 7 8 0.8 12 4.08 1/50 8 8 1.0 12 4.08 1/50 9 8 1.2 12 4.08 1/50 10 8 1.5 12 4.08 1/50 表 5 单周期正弦沙纹长度d对Bragg共振反射影响的计算工况
Table 5. The calculation cases of the influences of length d by singly periodic sinusoidal sand ripples on the Bragg resonance reflection
case N b/m d/m h3/m seabed slope 1 4 1.5 8 6 0 2 4 1.5 9 6 0 3 4 1.5 10 6 0 4 4 1.5 11 6 0 5 4 1.5 12 6 0 6 4 1.5 8 5.36 1/50 7 4 1.5 9 5.28 1/50 8 4 1.5 10 5.20 1/50 9 4 1.5 11 5.12 1/50 10 4 1.5 12 5.04 1/50 表 6 叠加的两正弦沙纹高度b1和b2对Bragg共振反射影响的计算工况
Table 6. The calculation cases of the influences by superimposed 2 sinusoidal sand ripple heights b1 and b2 on the Bragg resonance reflection
case N b1/h1 b2/h1 d/m h3/m seabed slope 1 4 0.32 0 8 6 0 2 4 0 0.32 8 6 0 3 4 0.32 0.32 8 6 0 4 4 0.32 0.48 8 6 0 5 4 0.48 0.32 8 6 0 6 4 0.32 0 8 5.36 1/50 7 4 0 0.32 8 5.36 1/50 8 4 0.32 0.32 8 5.36 1/50 9 4 0.32 0.48 8 5.36 1/50 10 4 0.48 0.32 8 5.36 1/50 表 7 叠加的两正弦沙纹高度b1和b2对Bragg共振相位和峰值的影响
Table 7. Influences of superimposed 2 sinusoidal sand ripple heights b1 and b2 on the phases and peaks of the Bragg resonance
b1/h1 b2/h1 the Bragg primary resonance the Bragg subharmonic resonance seabed slope is 0 seabed slope is 1/50 seabed slope is 0 seabed slope is 1/50 phase 2d/L peak KR phase 2d/L peak KR phase 2d/L peak KR phase 2d/L peak KR 0.32 0 0.907 50 0.294 32 0.902 50 0.341 36 1.932 50 0.008 16 1.930 00 0.013 99 0 0.32 1.922 50 0.048 29 1.917 50 0.075 74 - - - - 0.32 0.32 0.940 00 0.617 77 0.932 50 0.653 00 1.967 50 0.173 14 1.967 50 0.237 05 0.32 0.48 0.992 50 0.794 10 0.977 50 0.823 04 1.997 50 0.514 66 1.997 50 0.627 69 0.48 0.32 0.947 50 0.808 67 0.933 50 0.846 34 1.982 50 0.393 53 1.982 50 0.498 45 -
[1] BOUSSINESQ J. Theory of wave and swells propagated in a long horizontal canal and imparting to the liquid contained in this canal approximately equal velocities from the surface to the bottom[J]. Journal of Pure and Applied Mathematics, 1872, 17(2): 112-116. [2] PEREGRINE D H. Long waves on a beach[J]. Journal of Fluid Mechanics, 1967, 27(4): 815-827. doi: 10.1017/S0022112067002605 [3] BERKHOFF J C W. Computation of combined refraction-diffraction[C]//13th International Conference on Coastal Engineering. Vancouver, British Columbia, Canada, 1972. [4] 刘焕文. 缓坡方程解析解的研究进展综述[C]//第十七届中国海洋(岸)工程学术讨论会. 南宁, 2015: 339-344.LIU Huanwen. Review of research progress on analytical solutions of mild slope equation[C]//Proceeding 17th Conference China Ocean Coastal Engineering. Nanning, 2015: 339-344. (in Chinese) [5] BOOIJ N. A note on the accuracy of the mild-slope equation[J]. Coastal Engineering, 1983, 7(3): 191-203. doi: 10.1016/0378-3839(83)90017-0 [6] CHAMBERLAIN P G, PORTER D. The modified mild-slope equation[J]. Journal of Fluid Mechanics, 1995, 291: 393-407. doi: 10.1017/S0022112095002758 [7] CHANDRASEKERA C N, CHEUNG K F. Extended linear refraction-diffraction model[J]. Journal of Waterway, Port Coastal, and Ocean Engineering, 1997, 123(5): 280-286. doi: 10.1061/(ASCE)0733-950X(1997)123:5(280) [8] DAVIES A G. The reflection of wave energy by undulations on the seabed[J]. Dynamics of Atmospheres & Oceans, 1982, 6(4): 207-232. [9] LIU H W, LUO H, ZENG H D. Optimal collocation of three kinds of Bragg breakwaters for Bragg resonant reflection by long waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2015, 141(3): 1-17. [10] LIU H W, SHI Y P, CAO D Q. Optimization of parabolic bars for maximum Bragg resonant reflection of long waves[J]. Journal of Hydrodynamics, 2015, 27(3): 840-847. [11] LIU Y, LI H J, ZHU L. Bragg reflection of water waves by multiple submerged semi-circular breakwaters[J]. Applied Ocean Research, 2016, 56: 67-78. doi: 10.1016/j.apor.2016.01.008 [12] 刘焕文. 沙坝及人工沙坝引起海洋表面波Bragg共振反射的研究进展[J]. 应用数学和力学, 2016, 37(5): 459-471. doi: 10.3879/j.issn.1000-0887.2016.05.002LIU Huanwen. Advances in research on Bragg resonance of ocean surface waves by sandbars and artificial sandbars[J]. Applied Mathematics and Mechanics, 2016, 37(5): 459-471. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.05.002 [13] ZENG H, QIN B, ZHANG J. Optimal collocation of Bragg breakwaters with rectangular bars on sloping seabed for Bragg resonant reflection by long waves[J]. Ocean Engineering, 2017, 130: 156-165. doi: 10.1016/j.oceaneng.2016.11.066 [14] LIU H W, ZENG H D, HUANG H D. Bragg resonant reflection of surface waves from deep water to shallow water by a finite array of trapezoidal bars[J]. Applied Ocean Research, 2020, 94(1): 101976. [15] GUO F C, LIU H W, PAN J J. Phase downshift or upshift of Bragg resonance for water wave reflection by an array of cycloidal bars or trenches[J]. Wave Motion, 2021, 106: 102794. doi: 10.1016/j.wavemoti.2021.102794 [16] 潘俊杰, 刘焕文, 李长江. 周期排列抛物形系列沟槽引起的线性水波Bragg共振及共振相位上移[J]. 应用数学和力学, 2022, 43(3): 237-254. doi: 10.21656/1000-0887.420123PAN Junjie, LIU Huanwen, LI Changjiang. Bragg resonance and phase upshift of linear water waves excited by a finite periodic array of parabolic trenches[J]. Applied Mathematics and Mechanics, 2022, 43(3): 237-254. (in Chinese) doi: 10.21656/1000-0887.420123 [17] 李孟国, 王正林, 蒋德才. 近岸波浪传播变形数学模型的研究与进展[J]. 海洋工程, 2002, 20(4): 43-57. https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC200204008.htmLI Mengguo, WANG Zhenglin, JIANG Decai. A review on the mathematical models of wave transformation in the nearshore region[J]. China Ocean Engineering, 2002, 20(4): 43-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HYGC200204008.htm [18] DAVIES A G, HEATHERSHAW A D. Surface-wave propagation over sinusoidally varying topography[J]. Journal of Fluid Mechanics, 1984, 144: 419-443. doi: 10.1017/S0022112084001671 [19] LIU H W, LI X F, LIN P. Analytical study of Bragg resonance by singly periodic sinusoidal ripples based on the modified mild-slope equation[J]. Coastal Engineering, 2019, 150: 121-134. doi: 10.1016/j.coastaleng.2019.04.015 [20] PORTER D, PORTER R. Scattered and free waves over periodic beds[J]. Journal of Fluid Mechanics, 2003, 483: 129-163. doi: 10.1017/S0022112003004208 [21] PORTER D, STAZIKER D J. Extensions of the mild-slope equation[J]. Journal of Fluid Mechanics, 1995, 300: 367-382. doi: 10.1017/S0022112095003727 [22] KIRBY J T. A general wave equation for waves over rippled beds[J]. Journal of Fluid Mechanics, 1986, 162: 171-186. doi: 10.1017/S0022112086001994 [23] LINTON C M. Water waves over arrays of horizontal cylinders: band gaps and Bragg resonance[J]. Journal of Fluid Mechanics, 2011, 670: 504-526. doi: 10.1017/S0022112010005471 [24] LIU Y, YUE D K P. On generalized Bragg scattering of surface waves by bottom ripples[J]. Journal of Fluid Mechanics, 1998, 356: 297-326. doi: 10.1017/S0022112097007969 [25] CHANG H K, LIOU J C. Long wave reflection from submerged trapezoidal breakwaters[J]. Ocean Engineering, 2007, 34(1): 185-191. doi: 10.1016/j.oceaneng.2005.11.017