The 2D Adhesive Contact of the Functionally Graded Piezoelectric Coating Under a Conducting Indenter
-
摘要: 纳米压痕实验是研究材料的力学性能和表面形貌的重要手段,当接触区尺寸减小时,压头与试件接触表面间的黏附作用将无法忽视,因此,考虑黏附作用对压头作用下的接触问题具有重要的价值.功能梯度压电材料(FGPM)兼具梯度材料和压电材料的优点,用作涂层可有效地抑制接触损伤和破坏.该文将针对梯度压电材料在导电压头作用下的黏附接触问题开展研究,假设功能梯度压电涂层的材料参数按照指数形式变化,基于Maugis黏附模型,利用Fourier积分变换获得了功能梯度压电涂层在导电压头作用下的二维无摩擦黏附接触问题的控制奇异积分方程,并采用Erdogan-Gupta的数值方法求解,获得了黏附应力、梯度参数和压头所带电荷对力-电耦合响应的影响.研究结果为利用功能梯度压电材料涂层改善材料表面的接触行为提供了理论依据,同时可为压电结构及器件的设计提供帮助.
-
关键词:
- 功能梯度压电涂层 /
- 黏附 /
- Fourier积分变换 /
- 奇异积分方程
Abstract: Nano-indentation experiments are an important means of studying the mechanical properties and surface morphology of materials. With the decrease of the contact area, the adhesion between the indenter and the contact surface of the specimen cannot be ignored. Therefore, the adhesion effect plays an important role in the contact problem under the action of the indenter. The functional graded piezoelectric material (FGPM) has the advantages of both graded and piezoelectric materials, and can effectively avoid contact damage and failure of coatings. The adhesive contact problem of FGPMs under conducting indenters was studied. With exponentially changing material parameters of the FGPM coating, based on the Maugis adhesive model, the control singular integral equation for the 2D frictionless adhesive contact problem of the FGPM coating under the conducting indenter, was obtained through the Fourier integral transform, and the Erdogan-Gupta numerical method was used to solve the equation. The effects of the adhesive stress, the graded parameter and the charge of the indenter on the electro-mechanical coupling response were obtained. The results provide a theoretical basis for improving the contact behavior of material surfaces with FGPM coatings, and help design piezoelectric structures and devices. -
表 1 PZT-4压电陶瓷的材料参数
Table 1. Material parameters of the proposed PZT-4 piezoelectric ceramics
c110/GPa c130/GPa c330/GPa c440/GPa e310/(C/m2) e330/(C/m2) e150/(C/m2) ε110/(C/(V·m)) ε330/(C/(V·m)) 139 74.3 115 25.6 -5.2 15.1 12.7 6.461×10-9 5.62×10-9 -
[1] BRADLEY R S. The cohesive force between solid surface and the surface energy of solids[J]. Philosophical Magazine, 1932, 13: 853-862. [2] JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Roy Society London A, 1971, 324: 301-313. doi: 10.1098/rspa.1971.0141 [3] DERJAGUIN B V, MULLER V M, TOPOROV Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326. doi: 10.1016/0021-9797(75)90018-1 [4] MAUGIS D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model[J]. Journal of Colloid Interface Science, 1992, 150(1): 243-269. doi: 10.1016/0021-9797(92)90285-T [5] GREENWOOD J A, JOHNSON K L. An alternative to the Maugis model of adhesion between elastic spheres[J]. Journal of Physics D: Applied Physics, 1998, 31(22): 3279-3290. doi: 10.1088/0022-3727/31/22/017 [6] CHEN Z R, YU S W. Micro-scale adhesive contact of a spherical rigid punch on a piezoelectric half-space[J]. Composites Science and Technology, 2005, 65(9): 1372-1381. doi: 10.1016/j.compscitech.2004.12.007 [7] SERGICI A O, ADAMS G G, MVFTV S. Adhesion in the contact of a spherical indenter with a layered elastic half-space[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(9): 1843-1861. doi: 10.1016/j.jmps.2006.03.005 [8] CHEN S H, YAN C, SOH A. Adhesive behavior of two-dimensional power-law graded materials[J]. International Journal of Solids and Structures, 2009, 46(18/19): 3398-3404. [9] CHEN S H, YAN C, ZHANG P, et al. Mechanics of adhesive contact on a power-law graded elastic half-space[J]. Journal of the Mechanics and Physics of Solids, 2009, 57(9): 1437-1448. doi: 10.1016/j.jmps.2009.06.006 [10] JIN F, GUO X. Non-slipping adhesive contact of a rigid cylinder on an elastic power-law graded half-space[J]. International Journal of Solids and Structures, 2010, 47(11/12): 1508-1521. [11] GUO X, JIN F, GAO H J. Mechanics of non-slipping adhesive contact on a power-law graded elastic half-space[J]. International Journal of Solids and Structures, 2011, 48(18): 2565-2575. doi: 10.1016/j.ijsolstr.2011.05.008 [12] JIN F, GUO X, GAO H J. Adhesive contact on power-law graded elastic solids: the JKR-DMT transition using a double-Hertz model[J]. Journal of the Mechanics and Physics Solids, 2013, 61(12): 2473-2492. doi: 10.1016/j.jmps.2013.07.015 [13] JIN F, GUO X. Mechanics of axisymmetric adhesive contact of rough surfaces involving power-law graded materials[J]. Journal of the Mechanics and Physics Solids, 2013, 50(20/21): 3375-3386. [14] 靳凡. 先进功能材料的微尺度黏附接触力学研究[D]. 大连: 大连理工大学, 2013.JIN Fan. Mechanics of micro-scale adhesive contact on advanced functional materials[D]. Dalian: Dalian University of Technology, 2013. (in Chinese) [15] GUO X, JIN F. A generalized JKR-model for two-dimensional adhesive contact of transversely isotropic piezoelectric half-space[J]. Journal of the Mechanics and Physics Solids, 2009, 46(20): 3607-3619. [16] ZHU X H, MENG Z Y. Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator[J]. Sensors and Actuators A: Physical, 1995, 48(3): 169-176. doi: 10.1016/0924-4247(95)00996-5 [17] KE L L, YANG J, KITIPORNCHAI S, et al. Frictionless contact analysis of a functionally graded piezoelectric layered half-plane[J]. Smart Materials and Structures, 2008, 17(2): 025003. doi: 10.1088/0964-1726/17/2/025003 [18] KE L L, YANG J, KITIPORNCHAI S, et al. Electro-mechanical frictionless contact behavior of a functionally graded piezoelectric layered half-plane under a rigid punch[J]. International Journal of Solids and Structures, 2008, 45(11/12): 3313-3333. [19] LIU T J, ZHANG C Z. Axisymmetric conducting indenter on a functionally graded piezoelectric coating[J]. International Journal of Mechanical Sciences, 2016, 115/116: 34-44. doi: 10.1016/j.ijmecsci.2016.06.008 [20] LIU T J, ZHANG C Z, WANG Y S. Analysis of axisymmetric indentation of functionally graded piezoelectric coating or substrate systems under an insulator indenter[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(1): 23-34. doi: 10.1177/1045389X16642305 [21] LIU T J, LI P X, ZHANG C Z. On contact problem with finite friction for a graded piezoelectric coating under an insulating spherical indenter[J]. International Journal of Engineering Science, 2017, 121: 1-13. doi: 10.1016/j.ijengsci.2017.08.001 [22] SU J, KE L L, WANG Y S. Axisymmetric partial slip contact of a functionally graded piezoelectric coating under a conducting punch[J]. Journal of Intelligent Material Systems and Structures, 2017, 28(4): 1925-1940. [23] 苏洁. 功能梯度压电材料的摩擦接触分析[D]. 北京: 北京交通大学, 2018.SU Jie. Frictional contact analysis of functionally graded piezoelectric materials[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese) [24] 刘兴伟, 李星, 汪文帅. 一维六方压电准晶中正n边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2020, 41(7): 713-724. doi: 10.21656/1000-0887.400334LIU Xingwei, LI Xing, WANG Wenshuai. The anti-plane problem of regular n-polygon holes with radial edge cracks in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2020, 41(7): 713-724. (in Chinese) doi: 10.21656/1000-0887.400334 [25] 马占洲, 刘铁军. 基于层合板模型的梯度压电涂层Reissner-Sagoci问题研究[J]. 力学季刊, 2022, 43(4): 876-888. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX202204014.htmMA Zhanzhou, LIU Tiejun. Investigation on Reissner-Sagoci problem for functionally graded piezoelectric coating based on laminate model[J]. Chinese Quarterly of Mechanics, 2022, 43(4): 876-888. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX202204014.htm [26] 代文鑫, 刘铁军. 导电压头作用下的多层功能梯度压电材料涂层二维接触问题研究[J]. 应用数学和力学, 2023, 44(3): 282-303. doi: 10.21656/1000-0887.430187DAI Wenxin, LIU Tiejun. Investigation on the 2D contact of multilayer functionally graded piezoelectric material coating under conducting indenters[J]. Applied Mathematics and Mechanics, 2023, 44(3): 282-303. (in Chinese) doi: 10.21656/1000-0887.430187 [27] BANEY J M, HUI C Y. A cohesive zone model for the adhesion of cylinders[J]. Journal of Adhesion Science and Technology, 1997, 11(3): 393-406. doi: 10.1163/156856197X00778 [28] LI P X, LIU T J. Two-dimensional adhesive contact problem for graded coating based on a new multi-layer model[J]. IOP Conference Series: Materials Science and Engineering, 2018, 301(1): 012043. [29] LI P X, LIU T J. The adhesive contact problem between a graded coated half-space and a cylindrical indenter by using a Maugis model[J]. Journal of Adhesion science and Technology, 2018, 32(22): 1483291. [30] LI P X, LIU T J. The two-dimensional adhesive contact problem in the theory of couple stress elasticity[J]. Journal of Adhesion Science and Technology, 2020, 34(10): 1062-1082. [31] LI P X, LIU T J. The size effect in adhesive contact on gradient nanostructured coating[J]. Nanotechnology, 2021, 32(23): 235704. doi: 10.1088/1361-6528/abe9e6 [32] LI P X, LIU T J. The axisymmetric contact in couple-stress elasticity taking into account adhesion[J]. Journal of Adhesion Science and Technology, 2021, 1: 50-71. [33] LI P X, LIU T J. Axisymmetric adhesive contact of multi-layer couple-stress elastic structures involving graded nanostructured materials[J]. Applied Mathematical Modelling, 2022, 111: 501-520 doi: 10.1016/j.apm.2022.06.044 [34] 李培兴. 考虑尺度效应的梯度纳米涂层的粘附与接触力学行为研究[D]. 呼和浩特: 内蒙古工业大学, 2022.LI Peixing. Study of adhesion and contact mechanics behavior for gradient nanocoatings considering scale effect[D]. Hohhot: Inner Mongolia University of Technology, 2022. (in Chinese) [35] ERDOGAN F, GUPTA G D, COOK T S. Numerical Solution of Singular Integral Equations[M]//Mechanics of Fracture. Noordhoff: Leyden, 1973. [36] ERDOGAN F, GUPTA G D. On the numerical solution of singular integral equations[J]. Quarterly of Applied Mathematics, 1972, 1: 525-534.