[1] |
李嘉钰, 陈梦成, 王开心. 基于剪切效应纤维梁单元的结构非线性有限元数值模拟[J]. 应用数学和力学, 2022, 43(1): 34-48. doi: 10.21656/1000-0887.420032LI Jiayu, CHEN Mengcheng, WANG Kaixin. Nonlinear numerical simulation of finite elements based on fiber beam elements with shear effects for structures[J]. Applied Mathematics and Mechanics, 2022, 43(1): 34-48. (in Chinese) doi: 10.21656/1000-0887.420032
|
[2] |
SUSSMAN T, BATHE K J. A finite element formulation for nonlinear incompressible elastic and inelastic analysis[J]. Computers & Structures, 1987, 26(1/2): 357-409.
|
[3] |
HUGHES T J R. Generalization of selective integration procedures to anisotropic and nonlinear media[J]. International Journal for Numerical Methods in Engineering, 1980, 15(9): 1413-1418. doi: 10.1002/nme.1620150914
|
[4] |
NAGTEGAAL J C, PARKS D M, RICE J R. On numerically accurate finite element solutions in the fully plastic range[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 4(2): 153-177. doi: 10.1016/0045-7825(74)90032-2
|
[5] |
SHAUER N, DUARTE C A. Improved algorithms for generalized finite element simulations of three-dimensional hydraulic fracture propagation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(18): 2707-2742. doi: 10.1002/nag.2977
|
[6] |
毛晓敏, 张慧化, 纪晓磊, 等. 基于XFEM和GA-BP神经网络的裂纹智能识别研究[J]. 应用数学和力学, 2022, 43(11): 1268-1280. doi: 10.21656/1000-0887.420250MAO Xiaomin, ZHANG Huihua, JI Xiaolei, et al. Intelligent crack recognition based on XFEM and GA-BP neural networks[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1268-1280. (in Chinese) doi: 10.21656/1000-0887.420250
|
[7] |
LI H, DUARTE C A. A two-scale generalized finite element method for parallel simulations of spot welds in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 28-65. doi: 10.1016/j.cma.2018.03.030
|
[8] |
BABUŠKA I, BANERJEE U. Stable generalized finite element method (SGFEM)[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 201/204: 91-111.
|
[9] |
SILLEM A, SIMONE A, SLUYS L J. The orthonormalized generalized finite element method-OGFEM: efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 287: 112-149. doi: 10.1016/j.cma.2014.11.043
|
[10] |
TIAN R. Extra-DOF-free and linearly independent enrichments in GFEM[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 266: 1-22. doi: 10.1016/j.cma.2013.07.005
|
[11] |
XIAO G Z, WEN L F, TIAN R, et al. Improved XFEM (IXFEM): 3D dynamic crack propagation under impact loading[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 405: 115844. doi: 10.1016/j.cma.2022.115844
|
[12] |
MA J W, DUAN Q L, TIAN R. A generalized finite element method without extra degrees of freedom for large deformation analysis of three-dimensional elastic and elastoplastic solids[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 392: 114639. doi: 10.1016/j.cma.2022.114639
|
[13] |
马今伟, 段庆林, 陈嵩涛. 无额外自由度广义有限元非线性分析[J]. 计算力学学报, 2021, 38(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202101009.htmMA Jinwei, DUAN Qinglin, CHEN Songtao. Extra-DOF-free generalized finite element method for non-linear analysis[J]. Chinese Journal of Computational Mechanics, 2021, 38(1): 60-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202101009.htm
|
[14] |
ELGUEDJ T, BAZILEVS Y, CALO V M, et al. B-bar and F-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33/40): 2732-2762.
|
[15] |
CHEN J S, PAN C, WU C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 195-227. doi: 10.1016/S0045-7825(96)01083-3
|
[16] |
BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear Finite Elements for Continua and Structures[M]. 2nd ed. UK: John Wiley & Sons, 2014.
|
[17] |
SIMO J C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer-Verlag, 1998.
|