留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微分求积法分析平面接头应力奇异性

葛仁余 张佳宸 马国强 刘小双 牛忠荣

葛仁余,张佳宸,马国强,刘小双,牛忠荣. 微分求积法分析平面接头应力奇异性 [J]. 应用数学和力学,2022,43(4):382-391 doi: 10.21656/1000-0887.420218
引用本文: 葛仁余,张佳宸,马国强,刘小双,牛忠荣. 微分求积法分析平面接头应力奇异性 [J]. 应用数学和力学,2022,43(4):382-391 doi: 10.21656/1000-0887.420218
GE Renyu, ZHANG Jiachen, MA Guoqiang, LIU Xiaoshuang, NIU Zhongrong. Analysis on Stress Singularity of Plane Joints With the Differential Quadrature Method[J]. Applied Mathematics and Mechanics, 2022, 43(4): 382-391. doi: 10.21656/1000-0887.420218
Citation: GE Renyu, ZHANG Jiachen, MA Guoqiang, LIU Xiaoshuang, NIU Zhongrong. Analysis on Stress Singularity of Plane Joints With the Differential Quadrature Method[J]. Applied Mathematics and Mechanics, 2022, 43(4): 382-391. doi: 10.21656/1000-0887.420218

微分求积法分析平面接头应力奇异性

doi: 10.21656/1000-0887.420218
基金项目: 安徽省自然科学基金 (1808085ME147);国家级大学生创新创业训练计划(202010363121)
详细信息
    作者简介:

    葛仁余(1969—),男,副教授,博士(E-mail:gerenyu@sina.com

    张佳宸(1996—),男,硕士生(通讯作者. E-mail:381610972@qq.com

  • 中图分类号: O343.4

Analysis on Stress Singularity of Plane Joints With the Differential Quadrature Method

  • 摘要:

    对于双材料平面接头问题提出了一个分析应力奇性指数的新方法:微分求积法(DQM)。首先,将平面接头连接点处位移场的径向渐近展开格式代入平面弹性力学控制方程,获得了关于应力奇性指数的常微分方程组(ODEs)特征值问题。然后,基于DQM理论,将ODEs的特征值问题转化为标准型广义代数方程组特征值问题,求解之可一次性地计算出双材料平面接头连接点处应力奇性指数,同时,一并求出了接头连接点处相应的位移和应力特征函数。数值计算结果说明该文DQM计算平面接头连接点处应力奇性指数的结果是正确的。

  • 图  1  两相材料平面接头模型

    Figure  1.  The 2-phase isotropic multi-material junction model

    图  2  平面接头模型1

    Figure  2.  Plane junction model 1

    图  3  β = 90°时,平面接头模型1的应力奇性指数

    Figure  3.  The singular index of stress in plane joint model 1 for β = 90°

    图  4  β = 15°时,平面接头模型1的应力奇性指数

    Figure  4.  The singular index of stress in plane joint model 1 for β = 15°

    图  5  E(2)/E(1) = 0.01时,平面接头模型1第1阶应力奇性指数λ1对应的位移和应力特征函数曲线图

    Figure  5.  Displacement and stress characteristic function curves corresponding to 1st-order stress singular index λ1 of plane joint model 1 for E(2)/E(1) = 0.01

    图  6  E(2)/E(1) = 0.1时,平面接头模型1第1阶应力奇性指数λ1对应的位移和应力特征函数曲线图

    Figure  6.  Displacement and stress characteristic function curves corresponding to the 1st-order stress singular index λ1 of plane joint model 1 for E(2)/E(1) = 0.1

    图  7  平面接头模型2

    Figure  7.  Plane junction model 2

    图  8  β = 180°时,平面接头模型2应力奇性指数

    Figure  8.  The singular index of stress in plane joint model 2 for β = 180°

    图  9  β = 135°时,平面接头模型2应力奇性指数

    Figure  9.  The singular index of stress in plane joint model 2 for β = 135°

    图  10  E(2)/E(1) = 3时,平面接头模型2第1阶应力奇性指数λ1对应的位移和应力特征函数曲线图

    Figure  10.  Displacement and stress characteristic function curves corresponding to the 1st-order stress singular index λ1 of plane joint model 2 for E(2)/E(1) = 3

    图  11  E(2)/E(1)=3时,平面接头模型2第2阶应力奇性指数λ2对应的位移和应力特征函数曲线图

    Figure  11.  Displacement and stress characteristic function curves corresponding to the 2nd-order stress singular index λ2 of plane joint model 2 for E(2)/E(1)=3

    图  12  平面接头模型3

    Figure  12.  Plane junction model 3

    图  13  β = 90°时,平面接头模型3应力奇性指数

    Figure  13.  The singular index of stress in plane joint model 3 for β = 90°

    表  1  η = 3.0时,平面接头模型1的第1阶应力奇性指数λ1计算值随离散单元数N的变化

    Table  1.   Variation of the 1st-order stress singularity index of plane joint model 1 with number of discrete elements N for η = 3.0

    β/(°)η = 3.0
    N = 4N = 6N = 8N = 10N = 12ref. [14]
    15−0.142 935 841−0.171 926 062−0.172 359 547−0.174 841 720−0.174 843 563−0.174 837
    30−0.172 189 244−0.168 084 637−0.168 357 284−0.171 008 990−0.171 010 442−0.171 006
    45−0.120 351 300−0.097 236 818−0.097 575 977−0.100 173 229−0.100 174 236−0.100 170
    60−0.042 900 476−0.008 193 459−0.008 995 020−0.011 148 934−0.011 150 916−0.011 146
    75−0.039 048 671−0.009 146 856−0.011 225 252−0.012 133 752−0.012 128 895−0.012 132
    90−0.072 175 519−0.480 812 299−0.050 550 470−0.051 075 515−0.051 073 963−0.051 074
    下载: 导出CSV

    表  2  η = 4.0时,平面接头模型1的第1阶应力奇性指数λ1计算值随离散单元数N的变化

    Table  2.   Variation of the 1st-order stress singularity index of plane joint model 1 with number of discrete elements N for η = 4.0

    β/(°)η = 4.0
    N = 4N = 6N = 8N = 10N = 12ref. [14]
    15−0.191 925 955−0.214 512 897−0.215 023 699−0.217 433 336−0.217 435 029−0.217 430
    30−0.205 239 132−0.198 498 506−0.198 833 494−0.201 426 794−0.201 428 700−0.201 424
    45−0.136 422 364−0.112 082 716−0.112 388 798−0.115 019 309−0.115 020 289−0.115 016
    60−0.042 586 733−0.006 382 054−0.007 046 986−0.009 334 714−0.009 339 771−0.009 332
    75−0.056 361 125−0.029 365 948−0.031 589 068−0.032 355 253−0.032 357 518−0.032 354
    90−0.092 606 092−0.071 003 905−0.073 550 960−0.073 999 146−0.073 998 571−0.073 998
    下载: 导出CSV

    表  3  η = 5.0时,平面接头模型1的第1阶应力奇性指数λ1计算值随离散单元数N的变化

    Table  3.   Variation of the 1st-order stress singularity index of plane joint model 1 with number of discrete elements N for η = 5.0

    β/(°)η = 5.0
    N = 4N = 6N = 8N = 10N = 12ref. [14]
    15−0.226 230 590−0.244 514 386−0.245 073 248−0.247 438 211−0.247 439 135−0.247 435
    30−0.226 503 691−0.218 078 739−0.218 450 970−0.221 009 453−0.221 009 756−0.221 006
    45−0.145 347 760−0.120 250 154−0.120 521 489−0.123 186 475−0.123 187 448−0.123 183
    60−0.039 263 008−0.001 610 141−0.002 117 127−0.004 559 442−0.004 551 847−0.004 556
    75−0.073 518 508−0.049 300 481−0.051 647 322−0.052 291 762−0.052 286 395−0.052 290
    90−0.108 633 756−0.088 879 155−0.091 481 239−0.091 875 053−0.091 874 796−0.091 874
    下载: 导出CSV
  • [1] LIU C I, CHUE C H. On the stress singularity of dissimilar anisotropic wedges and junctions in anti-plane shear[J]. Composite Structures, 2006, 73(4): 432-442. doi: 10.1016/j.compstruct.2005.02.015
    [2] 张志春, 强洪夫, 周伟. 基于粘结界面模型的三维裂纹扩展研究[J]. 计算物理, 2010, 27(4): 586-592. (ZHANG Zhichun, QIANG Hongfu, ZHOU Wei. 3D crack propagation in cohesive zone models[J]. Chinese Journal of Computational Physics, 2010, 27(4): 586-592.(in Chinese) doi: 10.3969/j.issn.1001-246X.2010.04.015
    [3] HEIN V L, ERDOGAN F. Stress singularities in a two-material wedge[J]. International Journal of Fracture, 1971, 7: 317-330. doi: 10.1007/BF00184307
    [4] BOGY D B. On the problem of edgebonded elastic quarteroplanes loaded at the boundary[J]. International Journal of Solids & Structures, 1970, 6(9): 1287-1313.
    [5] BOGY D B. Two edge-bonded elastic wedges of different materials and wedge angles under surface tractions[J]. Journal of Applied Mechanics, 1971, 38(2): 377-386. doi: 10.1115/1.3408786
    [6] WILLIAMS M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J]. Journal of Applied Mechanics, 1952, 19(4): 526-528. doi: 10.1115/1.4010553
    [7] ENGLAND A H. On stress singularities in linear elasticity[J]. International Journal of Engineering Science, 1971, 9(6): 571-585. doi: 10.1016/0020-7225(71)90039-5
    [8] STERN M, SONI M L. On the computation of stress intensities at fixed-free corners[J]. International Journal of Solids & Structures, 1976, 12(5): 331-337.
    [9] CARPENTER W C, BYERS C. A path independent integral for computing stress intensities for V-notched cracks in a bi-material[J]. International Journal of Fracture, 1987, 35: 245-268. doi: 10.1007/BF00276356
    [10] PAGGI M, CARPINTERI A. On the stress singularities at multi-material interfaces and related analogies with fluid dynamics and diffusion[J]. Applied Mechanics Reviews, 2008, 61(2): 1-22.
    [11] PICU C R, GUPTA V. Stress singularities at triple junctions with freely sliding grains[J]. International Journal of Solids & Structures, 1996, 33(11): 1535-1541.
    [12] LIU X H, SUO Z, MA Q. Split singularities: stress field near the edge of a silicon die on a polymer substrate[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 47(1): 67-76.
    [13] BONIFACE V, SIMHA K R Y. Suppression of complex singularity using wedge interphase in interface fracture[J]. International Journal of Solids and Structure, 2001, 38(30/31): 5411-5420.
    [14] 张金轮, 葛仁余, 韩有民, 等. 各向同性材料接头和界面相交裂纹应力奇异性特征分析[J]. 应用力学学报, 2017, 34(1): 14-19. (ZHANG Jinlun, GE Renyu, HAN Youmin, et al. Analysis of the stress singularity of the junctions and plane cracks terminating at the interface in bonded dissimilar isotropic materials[J]. Chinese Journal of Applied Mechanics, 2017, 34(1): 14-19.(in Chinese)
    [15] SATOR C, BECKER W. Closed-form solutions for stress singularities at plane bi- and trimaterial junctions[J]. Archive of Applied Mechanics, 2012, 82(5): 643-658. doi: 10.1007/s00419-011-0580-6
    [16] CARPINTERI A, PAGGI M. Analytical study of the singularities arising at multi-material interfaces in 2D linear elastic problems[J]. Engineering Fracture Mechanics, 2007, 74(1/2): 59-74.
    [17] CHO S B, CARPENTER W C. The complex potential approach to power-logarithmic stress singularities for V-notched cracks in a bi-material[J]. KSME International Journal, 1999, 13(1): 19-25. doi: 10.1007/BF02946119
    [18] BELLMAN R, CASTI J. Differential quadrature and long-term integration[J]. Journal of Mathematical Analysis and Applications, 1971, 34: 235-238. doi: 10.1016/0022-247X(71)90110-7
    [19] BERT C W, WANG X, STRIZ A G. Differential quadrature for static and free vibration analysis of anisotropic plates[J]. International Journal of Solids and Structures, 1993, 30(13): 1737-1744. doi: 10.1016/0020-7683(93)90230-5
    [20] BERT C W, JANG S K, STRIZ A G. Two new approximate methods for analyzing free vibration of structural components[J]. AIAA Journal, 2015, 26(5): 612-618.
    [21] LIEW K M, TEO T M, HAN J B. Three-dimensional static solutions of rectangular plates by variant differential quadrature method[J]. International Journal of Mechanical Sciences, 2001, 43(7): 1611-1628. doi: 10.1016/S0020-7403(00)00098-9
    [22] YANG J, KITIPORNCHAI S, LIEW K M. Non-linear analysis of thermos-electro-mechanical behavior of shear deformable FGM plates with piezoelectric actuators[J]. International Journal for Numerical Methods in Engineering, 2004, 59(12): 1605-1632. doi: 10.1002/nme.932
    [23] 许金泉. 界面力学[M]. 1版. 北京: 科学出版社, 2006.

    XU Jinquan. The Mechanics of Interface[M]. 1st ed. Beijing: Science Press, 2006. (in Chinese)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  190
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-28
  • 录用日期:  2021-07-28
  • 修回日期:  2021-09-19
  • 网络出版日期:  2022-03-24
  • 刊出日期:  2022-04-01

目录

    /

    返回文章
    返回