A 3rd-Order Modified Stencil WENO Scheme for Solution of Hyperbolic Conservation Law Equations
-
摘要:
为了降低经典的三阶加权本质无振荡(WENO)格式的数值耗散,提出了一种新的三阶WENO格式的修正模板近似方法。改进了经典WENO-JS格式中各候选模板上数值通量的一阶多项式逼近,通过加入二次项使模板逼近达到三阶精度。计算了相应的候选通量,并且通过引入可调函数φ(x),使得新的格式具有ENO性质。最后给出了一系列数值算例,证明了该方法的有效性。
Abstract:In order to reduce the numerical dissipation of the classical 3rd-order weighted essentially non-oscillatory (WENO) scheme, a new modified stencil approximation of the 3rd-order WENO scheme was proposed. The 1st-order polynomial approximation of numerical flux on each candidate stencil in the classical WENO-JS3 scheme was improved, and the quadratic term was added to make the stencil approximation reach the 3rd-order accuracy. The corresponding candidate fluxes were calculated. Moreover, the new scheme has essentially non-oscillatory properties through introduction of tunable function φ(x). A series of numerical examples show the effectiveness of the new method.
-
Key words:
- hyperbolic conservation law /
- WENO /
- modified stencil /
- nonlinear weight
-
表 1 线性对流方程(31)在初值(32a)下,不同格式在
$ t=2.0 $ 的L1误差和收敛阶Table 1.
$ L^1 $ errors and convergence rates at$ t=2.0 $ of different schemes for linear advection eq. (31) with initial data eq. (32a)$ N $ WENO-JS3 WENO-Z3 WENO-MS-JS3 WENO-MS-Z3 $ L^{1} $ error (order) $ L^{1} $ error (order) $ L^{1} $ error (order) $ L^{1} $ error (order) $ 10 $ 2.99E−1(−) 2.21E−1(−) 1.82E−1(−) 1.59E−1(−) $ 20 $ 9.07E−2(1.72) 7.31E−2(1.60) 5.84E−2(1.64) 4.80E−2(1.73) $ 40 $ 3.83E−2(1.24) 2.06E−2(1.83) 1.42E−2(2.04) 1.16E−2(2.05) $ 80 $ 9.62E−3(1.99) 4.85E−3(2.09) 3.14E−3(2.18) 2.45E−3(2.24) $ 160 $ 2.33E−3(2.05) 1.06E−3(2.19) 6.53E−4(2.27) 5.11E−4(2.26) $ 320 $ 5.46E−4(2.09) 2.18E−4(2.28) 1.17E−4(2.48) 8.12E−5(2.65) $ 640 $ 1.23E−4(2.15) 3.94E−5(2.47) 1.44E−5(3.02) 8.93E−6(3.18) $1\;280$ 2.43E−5(2.34) 5.55E−6(2.83) 1.78E−6(3.02) 1.05E−6(3.09) 表 2 线性对流方程(31)在初值(32a)下,不同格式在
$ t=2.0 $ 的$ L^{\infty} $ 误差和收敛阶Table 2.
$ L^{\infty} $ errors and convergence rates at$ t=2.0 $ of different schemes for linear advection eq. (31) with initial data eq. (32a)$ N $ WENO-JS3 WENO-Z3 WENO-MS-JS3 WENO-MS-Z3 $ L^{\infty} $ error (order) $ L^{\infty} $ error (order) $ L^{\infty} $ error (order) $ L^{\infty} $ error (order) $ 10 $ 5.30E−1(−) 4.31E−1(−) 3.80E−1(−) 3.43E−1(−) $ 20 $ 2.10E−1(1.34) 1.52E−1(1.50) 1.26E−1(1.59) 1.11E−1(1.63) $ 40 $ 8.76E−2(1.26) 5.94E−2(1.36) 4.67E−2(1.43) 4.02E−2(1.47) $ 80 $ 3.51E−2(1.32) 2.23E−2(1.41) 1.67E−2(1.48) 1.42E−2(1.50) $ 160 $ 1.36E−2(1.37) 8.16E−3(1.45) 5.85E−3(1.51) 4.94E−3(1.52) $ 320 $ 5.19E−3(1.39) 2.86E−3(1.51) 1.87E−3(1.65) 1.43E−3(1.79) $ 640 $ 1.91E−3(1.44) 8.94E−4(1.68) 4.37E−4(2.10) 2.73E−4(2.39) $1\;280$ 6.38E−4(1.58) 2.25E−4(1.99) 5.47E−5(3.00) 3.35E−5(3.03) 表 3 线性对流方程(31)在初值(32b)下,不同格式在
$ t=2.0 $ 的L1误差和收敛阶Table 3.
$ L^1 $ errors and convergence rates at$ t=2.0 $ of different schemes for linear advection eq. (31) with initial data eq. (32b)$ N $ WENO-JS3 WENO-Z3 WENO-MS-JS3 WENO-MS-Z3 $ L^{1} $ error (order) $ L^{1} $ error (order) $ L^{1} $ error (order) $ L^{1} $ error (order) $ 10 $ 2.94E−1(−) 2.31E−1 (−) 1.99E−1 (−) 1.79E−1 (−) $ 20 $ 1.14E−1(1.37) 7.74E−2(1.58) 6.31E−2(1.66) 5.33E−2(1.75) $ 40 $ 4.21E−2(1.44) 2.40E−2(1.69) 1.63E−2(1.95) 1.31E−2(2.01) $ 80 $ 1.13E−2(1.90) 5.74E−3(2.06) 3.81E−3(2.10) 3.02E−3(2.13) $ 160 $ 2.76E−3(2.03) 1.28E−3(2.16) 7.95E−4(2.26) 6.17E−4(2.29) $ 320 $ 6.53E−4(2.08) 2.68E−4(2.26) 1.48E−4(2.43) 1.04E−4(2.57) $ 640 $ 1.47E−4(2.15) 4.89E−5(2.45) 1.91E−5(2.95) 1.10E−5(3.24) $1\;280$ 3.02E−5(2.28) 7.12E−6(2.78) 2.36E−6(3.02) 1.37E−6(3.01) 表 4 线性对流方程(31)在初值(32b)下,不同格式在
$ t=2.0 $ 的L∞误差和收敛阶Table 4.
$ L^{\infty} $ errors and convergence rates at$ t=2.0 $ of different schemes for linear advection eq. (31) with initial data eq. (32b)$ N $ WENO-JS3 WENO-Z3 WENO-MS-JS3 WENO-MS-Z3 $ L^{\infty} $ error (order) $ L^{\infty} $ error (order) $ L^{\infty} $ error (order) $ L^{\infty} $ error (order) $ 10 $ 5.46E−1(−) 4.49E−1 (−) 3.96E−1 (−) 3.61E−1 (−) $ 20 $ 2.47E−1(1.44) 1.76E−1(1.35) 1.48E−1(1.42) 1.31E−1(1.46) $ 40 $ 1.04E−1(1.25) 7.03E−2(1.32) 5.58E−2(1.41) 4.86E−2(1.43) $ 80 $ 4.19E−2(1.31) 2.69E−2(1.39) 2.04E−2(1.45) 1.74E−2(1.48) $ 160 $ 1.64E−2(1.35) 9.92E−3(1.44) 7.20E−3(1.50) 6.03E−3(1.53) $ 320 $ 6.27E−3(1.39) 3.50E−3(1.50) 2.34E−3(1.62) 1.82E−3(1.73) $ 640 $ 2.30E−3(1.45) 1.10E−3(1.67) 5.62E−4(2.05) 3.62E−4(2.33) $1\;280$ 7.82E−4(1.56) 2.88E−4(1.93) 7.87E−5(2.83) 4.76E−5(2.93) -
[1] LIU X D, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994, 115(1): 200-212. doi: 10.1006/jcph.1994.1187 [2] HARTEN A, OSHER S. Uniformly high-order accurate non-oscillatory schemes Ⅰ[J]. SIAM Journal of Numerical Analysis, 1987, 24(2): 279-309. doi: 10.1137/0724022 [3] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes, Ⅲ[J]. Journal of Computational Physics, 1987, 71(2): 231-303. doi: 10.1016/0021-9991(87)90031-3 [4] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439-471. doi: 10.1016/0021-9991(88)90177-5 [5] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ[J]. Journal of Computational Physics, 1989, 83(1): 32-78. doi: 10.1016/0021-9991(89)90222-2 [6] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228. doi: 10.1006/jcph.1996.0130 [7] HENRICK A K, ASLAM T D, POWERS J M. Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points[J]. Journal of Computational Physics, 2005, 207: 542-567. doi: 10.1016/j.jcp.2005.01.023 [8] BORGES R, CARMONA M, COSTA B, et al. An improved WENO scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227: 3191-3211. doi: 10.1016/j.jcp.2007.11.038 [9] GEROLYMOS G A, S’EN’ECHAL D, VALLET I. Very-high-order WENO schemes[J]. Journal of Computational Physics, 2009, 228(23): 8481-8524. doi: 10.1016/j.jcp.2009.07.039 [10] WU X S, ZHAO Y X. A high-resolution hybrid scheme for hyperbolic conservation laws[J]. International Journal for Numerical Methods in Fluids, 2015, 78(3): 162-187. doi: 10.1002/fld.4014 [11] WU X S, LIANG J H, ZHAO Y X. A new smoothness indicator for third-order WENO scheme[J]. International Journal for Numerical Methods in Fluids, 2016, 81(7): 451-459. doi: 10.1002/fld.4194 [12] XU W Z, WU W G. An improved third-order WENO-Z scheme[J]. Journal of Scientific Computing, 2018, 75: 1808-1841. doi: 10.1007/s10915-017-0587-4 [13] WANG Y H, DU Y L, ZHAO K L, et al. A low-dissipation third-order weighted essentially nonoscillatory scheme with a new reference smoothness indicator[J]. International Journal for Numerical Methods in Fluid, 2020, 92: 1212-1234. doi: 10.1002/fld.4824 [14] 徐维铮, 孔祥韶, 吴卫国. 基于映射函数的三阶WENO改进格式及其应用[J]. 应用数学和力学, 2017, 38(10): 1120-1135. (XU Weizheng, KONG Xiangshao, WU Weiguo. An improved 3rd-order WENO scheme based on mapping functions and its application[J]. Applied Mathematics and Mechanics, 2017, 38(10): 1120-1135.(in Chinese) [15] 徐维铮, 吴卫国. 三阶WENO-Z精度分析及其改进格式[J]. 应用数学和力学, 2018, 39(8): 946-960. (XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960.(in Chinese) [16] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws: NASA/CR-97-206253[R]. ICASE Report, 1997. [17] SOD G A. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J]. Journal of Computational Physics, 1978, 27: 1-31. doi: 10.1016/0021-9991(78)90023-2 [18] LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics, 1954, 7(1): 159-193. doi: 10.1002/cpa.3160070112 [19] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics, 1984, 54(1): 115-173. doi: 10.1016/0021-9991(84)90142-6 [20] YOUNG Y N, TUFO H, DUBEY A, et al. On the miscible Rayleigh-Taylor instability: two and three dimensions[J]. Journal of Fluid Mechanics, 2001, 447: 377-408. doi: 10.1017/S0022112001005870