留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

壁面结构对三维可压缩气泡群影响的数值模拟研究

王金城 关晖 卫志军 吴锤结

王金城,关晖,卫志军,吴锤结. 壁面结构对三维可压缩气泡群影响的数值模拟研究 [J]. 应用数学和力学,2022,43(1):49-62 doi: 10.21656/1000-0887.420041
引用本文: 王金城,关晖,卫志军,吴锤结. 壁面结构对三维可压缩气泡群影响的数值模拟研究 [J]. 应用数学和力学,2022,43(1):49-62 doi: 10.21656/1000-0887.420041
WANG Jincheng, GUAN Hui, WEI Zhijun, WU Chuijie. 壁面结构对三维可压缩气泡群影响的数值模拟研究[J]. Applied Mathematics and Mechanics, 2022, 43(1): 49-62. doi: 10.21656/1000-0887.420041
Citation: WANG Jincheng, GUAN Hui, WEI Zhijun, WU Chuijie. 壁面结构对三维可压缩气泡群影响的数值模拟研究[J]. Applied Mathematics and Mechanics, 2022, 43(1): 49-62. doi: 10.21656/1000-0887.420041

Numerical Analysis on Effects of Wall Structures on  Bubble Groups

doi: 10.21656/1000-0887.420041
详细信息
  • 中图分类号: O35

壁面结构对三维可压缩气泡群影响的数值模拟研究

  • 摘要:

    With the volume of fluid (VOF) method for a dam-break problem, the effects of wall structures on compressible bubble groups were studied through measurement of the spatial average pressure on the wall. An obstacle was set up at the bottom of the tank, which helps create air bubbles in the collapsing water impacting on it. Three kinds of structures were set up on the left wall, namely, a cuboidal structure, an ellipsoidal structure and a conical structure. It is found that when water hits the left wall, the topology of the bubble wrapped in the water will be changed by the wall structure, which leads to the change of pressure on the wall. The example analysis shows that, the cuboidal structure has the maximum effect in reducing the average pressure amplitude on the wall among those three kinds of wall structures. Especially, a proper adjustment of the position and the size of the cuboidal structure can eliminate the oscillation of the wall pressure.

  • Figure  1.  Geometry and mesh of the computational domain with ellipsoids, cuboids and cones: (a) ellipsoidal wall structures; (b) cuboidal wall structures; (c) conical wall structures

    Figure  2.  Initial configuration of the static water column (ellipsoidal wall structures)

    Figure  3.  Comparison between the results of the codes used in this study and the experimental data[23]

    Figure  4.  Comparison of the results from cases where grid numbers are 65 536, 524 388 and 1 769 472, respectively: (a) 0~5 s; (b) 0.4~1.5 s

    Figure  5.  The impact process of wall structures, water and bubbles: (a) initial state; (b) before generation of bubbles; (c) generation of bubbles

    Figure  6.  Wall pressure evolution in the case where ellipsoid height Lz = 0.1 m

    Figure  7.  Pressure and density distributions along the sample line at 0.5 s: (a) the sample line (white); (b) the pressure along the sample line; (c) the density along the sample line

    Figure  8.  Pressure and density distributions along the sample line at 0.57 s: (a) the sample line (white); (b) the pressure along the sample line;(c) the density along the sample line

    Figure  9.  Wall pressure evolutions: (a) the cases with ellipsoid height Lz = 0.2~0.8 m; (b) the case with Lz = 0.4 m and the no-ellipsoid case

    Figure  10.  Wall pressure evolutions and flow fields in the cases with ellipsoid height Lz = 0.1~0.3 m

    Figure  11.  Wall pressure evolutions and flow fields in the cases with ellipsoid height Lz = 0.5~0.7 m

    Figure  12.  Wall pressure evolutiond in the cases with ellipsoid height Ls = 0.2~0.4 m

    Figure  13.  The flow field in the ellipsoid wall structure case with ellipsoid height Ls = 0.4 m

    Figure  14.  Wall pressure evolution in cases with cuboid height Lz=0.1~0.8 m

    Figure  15.  Wall pressure evolution in cases with cuboid height Lz=0.15~0.25 m

    Figure  16.  The flow field in the cuboidal wall structure case with height Lz=0.2 m

    Figure  17.  Wall pressure evolutions in the cases with cuboid length Ly=0.1~0.5 m

    Figure  18.  The flow field in the cuboidal wall structure cases with cuboid heights Lz = 0.2 m and Ly = 0.5 m: (a) the flow profile; (b) the bubble contour

    Figure  19.  Wall pressure evolutions in the cases with cone lengths Lz = 0.1~0.8 m

    Figure  20.  Wall pressure evolutions in the cases with cone lengths Lz=0.2~0.45 m

    Table  1.   Boundary conditions of each variable

    wall boundary conditionoutlet boundary condition
    liquid phase fractionalzero gradientinlet outlet
    pressurebuoyant pressuretotal pressure
    velocityfixed valuepressure inlet outlet velocity
    下载: 导出CSV
  • [1] CAPART H, YOUNG D L. Formation of a jump by the dam-break wave over a granular bed[J]. Journal of Fluid Mechanics, 1998, 372: 165-187. doi: 10.1017/S0022112098002250
    [2] PRITCHARD D, HOGG A J. On sediment transport under dam-break flow[J]. Journal of Fluid Mechanics, 2002, 473: 265-274. doi: 10.1017/S0022112002002550
    [3] LOBOVSKÝ L, BOTIA-VERA E, CASTELLANA F, et al. Experimental investigation of dynamic pressure loads during dam break[J]. Journal of Fluids & Structures, 2014, 48: 407-434.
    [4] MARTIN J C, MOYCE W J. Part Ⅳ: an experimental study of the collapse of liquid columns on a rigid horizontal plane philosophical[J]. Transactions of the Royal Society of London(Series A): Mathematical and Physical Sciences, 1952, 244: 312-324.
    [5] KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear Science and Engineering, 1996, 123: 421-434. doi: 10.13182/NSE96-A24205
    [6] CRUCHAGA M A, CELENTANO D J, TEZDUYAR T E. Collapse of a liquid column: numerical simulation and experimental validation[J]. Computational Mechanics, 2007, 39: 453-476. doi: 10.1007/s00466-006-0043-z
    [7] HU C, SUEYOSHI M. Numerical simulation and experiment on dam break problem[J]. Journal of Marine Science and Application, 2010, 9: 109-114. doi: 10.1007/s11804-010-9075-z
    [8] COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191: 448-475. doi: 10.1016/S0021-9991(03)00324-3
    [9] MA Z H, CAUSON D M, QIAN L, et al. A compressible multiphase flow model for violent aerated wave impact problems[J]. Proceedings of the Royal Society A: Mathematical Physical & Engineering Sciences, 2014, 470: 1-25.
    [10] SHIN S. Simulation of compressibility of entrapped air in an incompressible free surface flow using a pressure-based method for unified equations[J]. International Journal for Numerical Methods in Fluids, 2020, 92: 1274-1289. doi: 10.1002/fld.4827
    [11] JANÍK P, HYHLÍK T. Pressure evaluation during dam break using weakly compressible SPH[J]. The European Physical Journal Conferences, 2019, 213: 02030. doi: 10.1051/epjconf/201921302030
    [12] WANG L, JIANG Q, ZHANG C, et al. Improvements of MPS for reducing numerical pressure oscillation in the dam break simulation[J]. Advances in Water Science, 2018, 29(1): 89-99.
    [13] WANG X G, LUO C, GU Z B. Collapse simulation of a cavitation bubble near a rigid boundary[J]. Journal of Zhejiang University of Technology, 2015, 43(5): 512-516.
    [14] LI S, ZHANG A M, HAN R, et al. Experimental and numerical study on bubble-sphere interaction near a rigid wall[J]. Physics of Fluids, 2017, 29(9): 092102. doi: 10.1063/1.4993800
    [15] BEIG S A, ABOULHASANZADEH B, JOHNSEN E. Temperatures produced by inertially collapsing bubbles near rigid surfaces[J]. Journal of Fluid Mechanics, 2018, 852: 102-125.
    [16] OpenCFD Ltd. OpenFOAM, the Open Source CFD Toolbox, User’s Guide[M]. Free Software Foundation, Inc, 2016.
    [17] NOH W F, WOODWARD P. SLIC (simple line interface calculation)[C]//Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics. Enschede: Twente University, 1976: 330-340.
    [18] WELLER H G. A new approach to VOF-based interface capturing methods for incompressible and compressible flow: TR/HGW/04[R]. Technical Report. OpenCFD Ltd, 2008.
    [19] FERZIGER J, PERIC M. Computational Methods for Fluid Dynamics[M]. Berlin: Springer, 2012.
    [20] ISSA R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65. doi: 10.1016/0021-9991(86)90099-9
    [21] JASAK H, WELLER H G. Interface tracking capabilities of the inter-gamma differencing scheme[R]. London: Imperial College, University of London, 1995.
    [22] GUAN H, WANG J C, WEI Z J, et al. Numerical analysis of the interaction of 3D compressible bubble clusters[J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(8): 1181-1196. doi: 10.1007/s10483-019-2509-6
    [23] KRÖNINGER D A. Particle-tracking-velocimetry-messungen an kollabierenden kavitationsblasen[D]. PhD Thesis. Göttingen: Georg-August Universität, 2008.
  • 加载中
图(20) / 表(1)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  201
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-20
  • 修回日期:  2021-05-09
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回